Calculation Cover Sheet

Project:	Hemphill Diversion F	Project		
Client:	Nevada Irrigation Di	strict - NID	Proj. No.	21-125
Title:	Hemphill Hydraulics	- 90% Submittal		
Prepared	d By, Name:	J. Burgi		
Prepared	d By, Signature:		Date:	3/4/2022
Peer Reviewed By, Name:		M. Cerucci		
Peer Reviewed, Signature:			Date:	

SUBJECT:	Nevada Irrigation District	- NID	BY: J. Burgi	CHK'D BY: M. Cerucci	
	Hemphill Diversion Proje	ct	DATE: 3/4/2022		
	Hemphill Hydraulics - 909	% Submittal	PROJECT NO.: 21-125		
Table of Co	ntent				
Hydraulice				Paga	
	nal Entranca Llaadlaaa				
Hemphill Ca	nal Entrance Headloss			3	
Hemphill Ca	nal Headloss			5	
				0	
Roughened	Channel Rock Sizing			7	
0	5				
Rock Gradat	tion			10	
Large Rock	Stability			12	
Manning's C	oefficient			14	
	appol Hydraulics			16	
				10	
Transition R	ock Sizina			18	
	5				
Fish Screen	Approach Velocity			20	
Auburn Ravi	ne Rating Curve			22	

SUBJECT:	Nevada Irrigation District - NID	BY: J. Burgi	CHK'D BY: M. Cerucci
	Hemphill Diversion Project	DATE: 3/4/2022	
	Hemphill Canal Entrance Head Loss	PROJECT NO.: 21-125	

The purpose of this calculation sheet is to identify the hydraulic grade line from Auburn Ravine to the canal.

References

Lindeburg, Michael. (2003). Civil Engineering Reference Manual, California, Professional Publications, Inc.
Mefford, Brent. (2014). Pocket Guide to Screening Small Water Diversions, USFS, USFWS, USBOR

Information - Input

Hemphill canal flow conditions			
Q_{min}	3 cfs		
Q_{design}	6 cfs		
Q _{max}	18 cfs		
Auburn Ravine	Water Surface Elevation		
WSELmin	198.5		
WSEL _{design}			
WSEL _{max}			

Calculation

Headloss through Cone Screen

$h = \frac{10{V_a}^2}{64}$		(Mefford, 2014)
Va	0.33 fps	Max screen approach velocity
h	0.017 ft	headloss through cone screen

Headloss through pipe from cone screen to canal.

$h = \frac{3.02}{C^1}$	22v ^{1.85} L ^{.85} D ^{1.17}		(Lindburg, 2003) eq. 17.30
v		fps	velocity
L	75	ft	length
С	140		roughness coefficienet
D	3	ft	diameter

Q (cfs) 3 6

18

Q (cfs)	v (fps)	h (ft)
3	0.424	0.0014
6	0.849	0.0050
18	2.546	0.0378

Minor Headloss in pipe from cone screen to canal

$$h_m = K * \frac{v^2}{2g}$$

(Lindburg, 2003) eq. 17.41

0.9 90 elbow

1 exit 1 entrance

Q (cfs)	v (fps)	v²/2g
3	0.424	0.0028
6	0.849	0.0112
18	2.546	0.1007

Total minor	
loss (ft)	
0.008	
0.032	

0.292

Minor losses in pipe include one 90 degree bend, two 45 degree bends and one exit.

Conclusion

Total losses from Auburn Ravine to the Canal include a weir, the cone screen, pipe, minor losses through the

	3 cfs	6 cfs	18 cfs
Cone loss (ft)	0.02	0.02	0.02
Pipe loss (ft)	0.00	0.00	0.04
Minor Loss (ft)	0.01	0.03	0.29
Total (ft)	0.03	0.05	0.35

Q	h1	h2	h3	Total
1	0.017	0.000	0.001	0.018
2	0.017	0.001	0.004	0.021
3	0.017	0.001	0.008	0.027
4	0.017	0.002	0.014	0.034
5	0.017	0.004	0.023	0.043
6	0.017	0.005	0.032	0.054
7	0.017	0.007	0.044	0.068
8	0.017	0.008	0.058	0.083
9	0.017	0.010	0.073	0.101
10	0.017	0.013	0.090	0.120
11	0.017	0.015	0.109	0.141
12	0.017	0.018	0.130	0.165
13	0.017	0.021	0.152	0.190
14	0.017	0.024	0.177	0.217
15	0.017	0.027	0.203	0.247
16	0.017	0.030	0.231	0.278
17	0.017	0.034	0.260	0.312
18	0.017	0.038	0.292	0.347
19	0.017	0.042	0.325	0.384
20	0.017	0.046	0.361	0.423

SUBJECT: Nevada Irrigation District - NID

T:	Nevada Irrigation District - NID	BY: J. Burgi	CHK'D BY: M. Cerucci
	Hemphill Diversion Project	DATE: 3/4/2022	
	Hemphill Canal Head Loss	PROJECT NO.: 21-125	

Purpose

The purpose of this calculation sheet is to identify the hydraulic grade line between the first Turkey Creek Golf Club culvert and the outlet from the fish screen.

References

• Tullis, J. Paul. (1989). Hydraulics of Pipelines, Pumps, Valves, Cavitation, Transients. New York: John Wiley & Sons.

• Miller, D.S. (1990). Internal Flow Systems, Design and Performance Prediction. Houston: Gulf Publishing Company.

Information - Input

Hemphill canal f	low conditions	
Q _{min}	3 cfs	
Q _{design}	6 cfs	
Q _{max}	18 cfs	
Hemphill Canal		
W _b	7 ft	bot width
z	1 :1	side slope
S	0.0002 ft/ft	Slope for end of proposed fish screen to culvert
L	790 ft	Distance from culvert to outlet
h	0.158	Change in elevation at the bottom of canal
n	0.025	Manning's coefficient

Calculation

Based on HY-8 analysis of first culvert (located approximately 790 feet downstream from the proposed fish screen, flow in the culvert is outlet controled, and the WSE at the entrance of the culvert is calculated as:

Flow	WSE	depth
cfs	ft	ft
3	197.26	0.92
6	197.65	1.31
18	198.72	2.38

Analysis will start from the hydraulically controled downstream end. The first culvert on Hemphill canal is approximatlet 790 feet downstream.

Calculation of Normal Depth between fish screen and culvert.

$$Q = \frac{1.486}{n} * A * R^{2/3} * S^{1/2}$$
$$A = \frac{Q * n}{1.49 * S^{1/2} * R^{2/3}}$$
$$A = d * (w + zd)$$
$$P = w + 2d (1 + t^2)^{0.5}$$

Q, cfs	Normal Depth d, ft	A, ft ²	P, ft	R, fr	V , fps
3.00	0.81	6.34	9.29	0.68	0.47
6.00	1.09	8.77	10.07	0.87	0.68
18.00	1.72	15.03	11.87	1.27	1.20

Standard step backwater calculation to find length of canal required to transition from flow depth at the culvert entrance to normal depth.

c Backwater calc for cfs

		6	С

d (ft)	A (ft2)	V (ft/s)	E (ft)	delta E	R (ft)	Sf	Avg -Sf	So-Avg Sf	dl (ft)	Cum Dist	Elev.
1.31	10.89	0.55	1.31		1.01689457	8.41E-05					197.65
				-0.02			8.63E-05	1.14E-04	-174.46	-174.46	
1.29	10.69	0.56	1.29		1.00426617	8.86E-05					197.63
				-0.02			9.10E-05	1.09E-04	-181.85	-356.30	
1.27	10.50	0.57	1.28		0.9915784	9.34E-05					197.61
				-0.02			9.60E-05	1.04E-04	-190.49	-546.80	
1.25	10.31	0.58	1.26		0.97883032	9.86E-05					197.59
				-0.02			1.01E-04	9.86E-05	-200.73	-747.53	
1.23	10.12	0.59	1.24		0.96602094	1.04E-04					197.57
				-0.02			1.07E-04	9.29E-05	-213.03	-960.56	
1.21	9.93	0.60	1.22		0.95314928	1.10E-04					197.55
				-0.02			1.13E-04	8.67E-05	-228.05	-1188.61	
1.19	9.75	0.62	1.20		0.9402143	1.16E-04					197.53
				-0.02			1.20E-04	8.01E-05	-246.78	-1435.38	
1.17	9.56	0.63	1.18		0.92721497	1.23E-04					197.51
				-0.02			1.27E-04	7.30E-05	-270.75	-1706.14	
1.15	9.37	0.64	1.16		0.91415023	1.31E-04					197.49
				-0.02			1.35E-04	6.53E-05	-302.46	-2008.60	
1.13	9.19	0.65	1.14		0.90101898	1.39E-04					197.47
				-0.02			1.43E-04	5.70E-05	-346.31	-2354.90	
1.11	9.00	0.67	1.12		0.88782011	1.47E-04					197.45
				-0.02			1.52E-04	4.80E-05	-410.76	-2765.66	
1.09	8.82	0.68	1.10		0.87455248	1.57E-04					197.43

Backwater calc for

18 cfs

d (ft)	A (ft2)	V (ft/s)	E (ft)	delta E	R (ft)	Sf	Avg -Sf	So-Avg Sf	dl (ft)	Cum Dist	Elev.
2.38	22.32	0.81	2.39		1.6257616	1.07E-05					198.72
				-0.05			1.11E-05	1.89E-04	-261.79	-261.79	
2.33	21.74	0.83	2.34		1.59959704	1.15E-05					198.67
				-0.05			1.20E-05	1.88E-04	-262.78	-524.57	
2.28	21.16	0.85	2.29		1.57325399	1.24E-05					198.62
				-0.05			1.29E-05	1.87E-04	-263.89	-788.46	
2.23	20.58	0.87	2.24		1.54672675	1.34E-05					198.57
				-0.05			1.40E-05	1.86E-04	-265.13	-1053.59	
2.18	20.01	0.90	2.19		1.52000941	1.46E-05					198.52
				-0.05			1.52E-05	1.85E-04	-266.51	-1320.10	
2.13	19.45	0.93	2.14		1.49309576	1.58E-05					198.47
				-0.05			1.65E-05	1.84E-04	-268.07	-1588.17	
2.08	18.89	0.95	2.09		1.46597933	1.72E-05					198.42
				-0.05			1.79E-05	1.82E-04	-269.83	-1858.00	
2.03	18.33	0.98	2.04		1.43865339	1.87E-05					198.37
				-0.05			1.95E-05	1.80E-04	-271.82	-2129.82	
1.98	17.78	1.01	2.00		1.41111086	2.04E-05					198.32
				-0.05			2.13E-05	1.79E-04	-274.09	-2403.90	
1.93	17.23	1.04	1.95		1.38334438	2.23E-05					198.27
				-0.05			2.33E-05	1.77E-04	-276.68	-2680.58	
1.88	16.69	1.08	1.90		1.35534624	2.44E-05					198.22
				-0.05			2.56E-05	1.74E-04	-279.67	-2960.25	
1.83	16.16	1.11	1.85		1.32710835	2.68E-05					198.17
				-0.05			2.81E-05	1.72E-04	-283.13	-3243.38	
1.78	15.63	1.15	1.80		1.29862228	2.94E-05					198.12
				-0.05			3.10E-05	1.69E-04	-287.17	-3530.55	
1.73	15.10	1.19	1.75		1.26987915	3.25E-05					198.07

Conclusion

The cumulative distance to transition from known flow depth of 1.31 feet (6 cfs) at the Turkey Creek Golf Club culvert to a calculated normal depth of 1.09 feet (6 cfs) results in a length of 2,765.66 feet. The proposed fish screen will be located approximately 790 feet upstream of the culvert. Therefore, normal depth will not be reached, and flow at the outlet of the fish screen will be controled by the flow conditions in the culvert. The calculated depth at normal flow of 6 cfs at the outlet from the fish screen is 1.23 feet. For the max flow of 18 cfs, the depth at the outlet from the fish screen is 2.23 ft.

SUBJECT:	Nevada Irrigation District - NID	BY: J. Bu	ırgi CHK'D E	Y:
	Hemphill Diversion Project	DATE: 3/4/20	022	
	Roughened Channel - Rock sizing	PROJECT NO.: 21-12	25	

The purpose of this calcualtion sheet is to compare different methods of calculating D50 based on CDFW XII methods for rock ramps and the Bureau of Reclemation Rock Ramp sizing methods.

References

• CDFW. (2009). California Salmonid Stream Habitat Restoration Manual - Part XII Fish Passage and Implementation. CDFW.

• USBR. (2007). Rock Ramp Design Guidelines. Denver: U.S. Department of Interior, Bureau of Reclamation

Information - Input

Q _{MAX} = Q _{100 YR} =	5000 15000	ft ³ /s ft ³ /s	Estimated bank full flow From FEMA
Channel Width _{MAX} =	83	ft	Bank full width
Channel Width _{100 YR} =	600	ft	Approximate floodplain width
S =	0.028	ft/ft	Roughened Channel Slope
q _{MAX} =	60.24 25.00	ft ² /s/ft ft ² /s/ft	
9100 YR -	20.00	10,0/10	

Calculation

CDFW XII Equation XII-I ACOE(1994)

$$D_{30-ACOE} = \frac{1.95 * S^{0.555} * (1.25q)^{\frac{2}{3}}}{g^{\frac{1}{3}}}$$

 $D_{84-ESM} = 1.5 * D_{30-ASCOE}$

 $D_{50-ESM} = 0.4 * D_{84-ESM}$

Where:

D_{30-ACOE} = D30 stable particle size based on rock gradation provided by ACOE 1994 (ft) S = Hydraulic slope (ft/ft)

q = unit discharge within active channel at stable bed design flow (cfs/ft)

g = gravitation acceleration (32.2 ft/s^2)

	Max				100 Year	
S =	0.028	ft/ft		S =	0.028	
q _{MAX} =	60.24	ft³/s/ft		q _{100 YR} =	25.00	ft3/s/ft
g =	32.2	ft/s ²		g =	32.2	ft/s ²
D _{30-ACOE MAX} =	1.502	ft	D ₃₀₋₄	ACOE 100 YR =	0.836	ft
D _{84-ESM MAX} =	2.254	ft	D ₈₄	-ESM 100 YR =	1.254	ft
D _{50-ESM MAX} =	0.901	ft	D ₅₀	-ESM 100 YR =	0.502	ft

BOR

Abt and Johnson (1991) Equation 4-2

```
q_{sizing} = 1.35 * q_{design}
```

Where:

$$D_{50} = \varphi_e * \varphi_c * a * 5.23 * S^{0.43} q_{sizing} {}^{0.56}$$

 D_{50} = D_{50} median diameter of rock layer (in)

 ϕe = coefficient for empirical envelope on the regression relationship =1.2

 ϕc = coefficient of flow concentration due to channelization within revetment

- a = shape factor for rounded versus angular material
- S = profile slope of rock ramp (ft/ft)

 q_{sizing} = design unit discharge (ft³/s/ft)

	Max				
q _{Sizing MAX} = 8	81.325301	2 ft ³ /s/ft	q _{Sizing 100 YR} =	33.8	ft ³ /s/ft
фе =	1.2		фе =	1.2	
фc =	1.2	assuming sheet flow	фс =	1.2	assuming sheet flow
a =	1.4	rounded material	a =	1.4	rounded material
S =	0.028	ft/ft	S =	0.028	ft/ft
D _{50 MAX} =	26.61	in	D _{50 100 YR} =	16.26	in
D _{50 MAX} =	2.22	ft	D _{50 100 YR} =	1.35	ft

BOR Ullmann (2000) Equation 4-	5					
$q_{sizing} = 1.35 * q_{design}$			Where:			
$D_{50} = 6.84 * S^{0.43} * q^{0.56} *$	$C_u^{0.25} * (1.1)$) D ₅₀ = D ₅₀ media) S = profile slop q _{sizing} = design uni	D ₅₀ = D ₅₀ median diameter of rock layer (in) S = profile slope of rock ramp (ft/ft) q _{sizing} = design unit discharge (ft ³ /s/ft)			
			C _u = Coefficien	t of uniformity, D ₆₀	/D ₁₀	
			R = percent ro	undness in decim	al form	
	Max				100 Year	
q _{Sizing MAX} =	81.3253012	ft³/s/ft		q _{Sizing 100 YR} =	33.8	ft³/s/ft
S =	0.028	ft/ft		S =	0.028	ft/ft
C _u =	2.4			C _u =	2.4	
R =	0.7			R =	0.7	
D _{50 MAX} =	25.22	in		D _{50 100 YR} =	15.41	in
D _{50 MAX} =	2.10	ft		D _{50 100 YR} =	1.28	ft

BOR Ferro (1999) Equation 4-6

$D_{50} = B *$	$(\varphi_e * \frac{0.95}{(\sigma_g^2)^{0.562}}$	$* \left(\frac{Q * S}{B^{\frac{5}{2}} * g^{\frac{1}{2}}}\right)$	$(\frac{\gamma_s - \gamma}{\gamma})^{\frac{1}{2}}$	Where: $D_{50} = D_{50}$ median of S = profile slope Q = total dischar $\phi e =$ coefficient for $\sigma_g^2 =$ geometric var g = gravitation a $\gamma_s =$ specific weig $\gamma =$ specific weig	diameter of roc of rock ramp (ge (ft ³ /s) or empirical dat ariance of grad cceleration (32 ght of stone (lbs ght of water (lbs	k layer (in) ft/ft) a in regres: ation, D ₈₄ /C 2 ft/s ²) s/ft ³)	sion relation	nship =1.4
		Max				100 Year		
	B =	83	ft		B =	600	ft	
	S =	0.028	ft/ft		S =	0.028	ft/ft	
	Q =	5000	ft ³ /s		Q =	15000	ft ³ /s	
	фе =	1.4			фе =	1.4		

фе =	1.4	
$\sigma_g^2 =$	4	
g =	32.2	ft/s ²
γ _s =	156.075	lbs/ft ³
¥ =	62.43	lbs/ft ³
D _{50 MAX} =	1.230	ft

	100 Year	
B =	600	ft
S =	0.028	ft/ft
Q =	15000	ft ³ /s
фе =	1.4	
$\sigma_g^2 =$	4	
g =	32.2	ft/s ²
γ _s =	156.075	lbs/ft ³
¥ =	62.43	lbs/ft ³
D _{50 100 YR} =	1.299	ft

BOR Robinson et al. (1998) Equation 10-6

$q_{sizing} = 1.35 * q_{design}$	

$$D_{50} = (\frac{q_{sizing}}{9.76 * 10^{-7} * S^{-1.50}})^{\frac{1}{1.89}}$$

Where:

 $D_{50} = D_{50}$ median diameter of rock layer (in)

S = profile slope of rock ramp (ft/ft)q_{sizing} = design unit discharge (ft³/s/ft)

Max		100 Year	
$S = 0.028 \text{ ft}^3/\text{s/ft}$	S =	0.028	ft ³ /s/ft
q_{sizing} = 81.3253012 ft/ft	q _{sizing} =	33.75	ft/ft
D _{50 MAX} = 258.49 mm	D _{50 100 YR} =	162.315	mm
D _{50 MAX} = 10.18 in	D _{50 100 YR} =	6.390	in
D _{50 MAX} = 0.85 ft	D _{50 100 YR} =	0.533	ft

BOR USACE Bed (1991) Equation 4-8 and 4-9

Where:

 D_{30} = Rock diameter for which 30% is smaller by mass (ft)

S = Slope of rock ramp (ft/ft)

q = unit discharge within active channel at stable bed design flow (cfs/ft)

g = gravitation acceleration (32.2 ft/s^2)

 D_{85} = Rock diameter for which 85% is smaller by mass (ft)

D₁₅ = Rock diameter for which 85% is smaller by mass (ft)

	Max			100 Year	
S =	0.028	ft/ft	S =	0.028	
q _{MAX} =	60.24	ft³/s/ft	q _{100 YR} =	25.00	ft3/s/ft
g =	32.2	ft/s ²	g =	32.2	ft/s ²
D _{30 MAX} =	1.502	ft	D _{30 100 YR} =	0.836	ft
D ₈₅ /D ₁₅ =	2.7		D ₈₅ /D ₁₅ =	2.7	
D _{50 MAX} =	2.092	ft	D _{50 100 YR} =	1.164	ft

Conclusion

Reference	Equation	D ₅₀	(ft)	D ₅₀ (in)		
Reference	Equation	Max	100 Yr	Max	100 Yr	
CDFW XII	Equation XII-I ACOE(1994)	0.90	0.50	10.82	6.02	
BOR	Abt and Johnson (1991) Equation 4-2	2.22	1.35	26.61	16.26	
BOR	Ullmann (2000) Equation 4-5	2.10	1.28	25.22	15.41	
BOR	Ferro (1999) Equation 4-6	1.23	1.30	14.76	15.59	
BOR	Robinson et al. (1998) Equation 10-6	0.85	0.53	10.18	6.39	
BOR	OR USACE Bed (1991) Equation 4-8 and 4-		1.16	25.10	13.97	

D_{50-ESM} 0.90

The CDFW rock sizing equation was compared with five other rock sizing equations for both the 100-year flow as defined by FEMA and a "max channel" flow estimating the maximum flow at bankfull flow. Due to the spread of the water for the 100-yr flow, the channel velocities may be lower than that of the bankfull flow. As a result the rock sizes for the max flow are greater than those for the 100-yr.

The D50's ranged from 0.90 ft - 2.22 ft with the CDFW method returning the smallest rock. The average rock size for the max flow is 1.5' (18 inches).

The CDFW D_{50} is smaller partially due to the specific gadation for Engineered Streambed Material (ESM). While the D_{50} is smaller, the gradiation calls for a larger D_{100} (as shown in the following pages) than what would be found in a normal rock gradation. These larger D_{100} rocks will provide sufficient stability for the smaller rock and as such, will provide a stable roughened channel.

Design will move forward with D_{50-ESM} of 0.90 ft.

SUBJECT:	Nevada Irrigation District - NID	BY: R. Hudson	CHK'D BY: J. Burgi
	Hemphill Diversion Project	DATE: 3/4/2022	_
	Roughened Channel - Rock Gradation	PROJECT NO.: 21-125	

The purpose of this calcualtion sheet is to calculate the Rock Gradation for the roughened channel based on the D50 calculated on the preveous calculation sheet.

References

• CDFW. (2009). California Salmonid Stream Habitat Restoration Manual - Part XII Fish Passage and Implementation. CDFW.

Information - Input

Q _{MAX} = Channel Width _{MAX} = S =	5000 83 0.028	ft ³ /s ft ft/ft	Estimated bank full flow Bank full width Roughened Channel Slope
q _{MAX} =	60.24	ft ² /s/ft	
D _{50 ESM} =	0.90	ft	

Calculation

CDFW XII Equation XII-I ACOE(1994) 2

D_{16-ESM MAX} =

0.072

ft

D 1.9	$5 * S^{0.555} * (1.25)$	$5q)\overline{3}$		Where:
$D_{30-ACOE} =$	1			D _{30-ACOE} = D30 stable particle size based on rock gradation provided by ACOE 1994 (ft)
	g^3			S = Hydraulic slope (ft/ft)
$D_{84-ESM} = 1.5$	* D _{30-ASCOE}			q = unit discharge within active channel at stable bed design flow (cfs/ft)
$D_{50-ESM}=0.4$	$* D_{84-ESM}$			g = gravitation acceleration (32.2 ft/s2)
$D_{100-ESM} = 2.5$	$5 * D_{84-ESM}$			
		Max		
	S =	0.028	ft/ft	
	q _{MAX} =	60.24	ft°/s/ft	
	g =	32.2	ft/s ²	
	D _{30-ACOE MAX} =	1.502	ft	
	D _{84-ESM MAX} =	2.254	ft	
	D _{50-ESM MAX} =	0.901	ft	
	D _{100-ESM MAX} =	5.634	ft	
DFW XII quation XII-2 AC	OE(1994)			

C E

	02(1334)			
$D_{16-ESM} = 0.32$	$\frac{1}{n}D_{50-ESM}$			Where: D _{50-ESM} = D ₅₀ median diameter of rock layer (ft) n = design partical-size distribution curve between 0.45-0.7. n value should result in D8-ESM to be approximately 2 mm. If it fails to, additional fines should be added to the mix to achieve the recommended 5 to 10% fines in the final mix
		Max		
	n =	0.45	ft ³ /s/ft	
	D _{50-ESM MAX} =	0.90	ft	

CDFW XII Equation XII-3 ACOE(1994) Where: $D_{8-ESM} = 0.16^{\frac{1}{n}} D_{50-ESM}$ D_{50-ESM} = D₅₀ median diameter of rock layer (ft) n = design partical-size distribution curve between 0.45-0.7. n value should result in D8-ESM to be approximately 2 mm. If it fails to, additional fines should be added to the mix to achieve the recommended 5 to 10% fines in the final mix Max ft³/s/ft 0.45 n = D_{50-ESM MAX} = 0.90 ft D_{8-ESM MAX} = 0.015 Additional fines required ft

CDFW XII

Engineered Streambed Material Thickness

 $ESM_{Thickness} = 0.67D_{100-ESM}$

Where: $D_{100-ESM} = D_{100}$ median diameter of rock layer (ft)

Conclusion

			-		
Rock Gradation	Max	Max	Rock		% p
	Diameter (ft)	Diameter (in)	Group	%	
0100-ESM MAX =	5.63	67.61	Α	8	
D84-ESM MAX =	2.25	27.04	В	4	
D50-ESM MAX =	0.90	10.82	С	4	
30-ACOE MAX =	1.50	18.03	D	8	
D16-ESM MAX =	0.07	0.86	E	9	
D8-ESM MAX =	0.02	0.18	F	17	
ESMThickness =	3.77	45.30	G	34	
		-	Н	8	

The CDFW guidance for the sizing of the D100 material results in rocks that are excessivly large for the scale of this project.

Т

8

0

An analysis of the stability of the rocks was completed on these large rocks (next page) finding that rock with diameter of 5.63 ft results in a factor of safety of 5.4. The D84 material with diameter of 2.25 ft, results in a factor of safety of 2.4. (see Large Rock Stability calcs).

Based on the results of the analysis of the factor of safety, we have reduced the diameter of the D100 material to 42" (3.5 ft) with

				Installatio
Rock		% pass	sing	n
Group	%	100	inches	Method
A	8	92	42-35	Α
В	7	85	24-35	Α
С	7	78	18-24	Α
D	10	68	11-18	Α
E	18	50	11-18	В
F	34	16	2-9	В
G	8	8	2mm-2in	В
Н	8	0	<2mm	В

Installation

Method

А

А

А

А

А

В

В

B B

inches

50-67

35-50

24-35

18-24

9-18

9-18

2-9

2mm-2in

<2mm

SUBJECT: Nevada Irrigation District - NID

Hemphill Diversion Project Roughened Channel - Large Boulder Analysis BY: J. Burgi CHK'D BY: _____ DATE: 3/4/2022 PROJECT NO.: 21-125

Purpose

The purpose of this calcualtion sheet is to calculate the factor of safety for the larger boulders

References

• USBR. (2007). Rock Ramp Design Guidelines. Denver: U.S. Department of Interior, Bureau of Reclamation

Information - Input

0=	5000	ft ³ /s	Estimated bank full flow
Q _{MAX} –	5000	n 75	Estimated bank full now
Q _{100 YR} =	15000	ft°/s	From FEMA
Channel Width _{MAX} =	83	ft	Bank full width
Channel Width _{100 YR} =	600	ft	Approximate floodplain width
S =	0.028	ft/ft	Roughened Channel Slope
q _{MAX} =	60.24	ft ² /s/ft	
q _{100 YR} =	25.00	ft²/s/ft	
_			
D _{50 MAX} =	0.90	ft	
D _{84 MAX} =	2.25	ft	
P =	85.2	ft	wetted perimeter
A =	241.4	ft ²	Area
R =	2.8	ft	Hydarulic Radius
W =	83.00	ft	Top Width
D =	2.91	ft	Hydraulic Depth

Calculation

 $\eta_1 = \eta_1$

$$SF = \frac{a_{\theta} \cdot \tan(\phi)}{\eta_1 \cdot \tan(\phi) + \sqrt{1 - a_{\theta}^2} \cdot \cos(\beta)}$$
$$a_{\theta} = \sqrt{\cos^2(\theta_1) - \sin^2(\theta_0)}$$
$$\theta = \tan^{-1}\left(\frac{\sin(\theta_0)}{\sin(\theta_1)}\right)$$
$$\eta_0\left[\frac{\left(\frac{A}{B}\right) + \sin(\lambda + \beta + \theta)}{1 + \left(\frac{A}{B}\right)}\right] \cong \eta_0\left[\frac{1 + \sin(\lambda + \beta + \theta)}{2}\right]$$

$$\eta_0 \cong \frac{18 \cdot \tau_0}{\left(\gamma_s - \gamma_w\right) \cdot D_s}$$

$$\beta = \tan^{-1} \left(\frac{\cos(\lambda + \theta)}{(A + B) \cdot \sqrt{1 - a_0^2}} + \sin(\lambda + \theta) \right) \cong \tan^{-1} \left(\frac{\cos(\lambda + \theta)}{\frac{2 \cdot \sqrt{1 - a_0^2}}{\eta_0 \cdot \tan(\phi)}} + \sin(\lambda + \theta) \right)$$
$$A = \left(\frac{l_4}{l_2} \right) \cdot \left(\frac{F_L}{F_s} \right)$$
$$B = \left(\frac{l_3}{l_4} \right) \cdot \left(\frac{F_D}{F_s} \right)$$
$$\frac{A}{B} \approx 1$$

Equation 7-1

Where,

- SF = Safety factor;
- D_s = rock diameter;
- $\theta_0 =$ longitudinal bed slope;
- θ_1 = bank side slope;
- ϕ = Angle of repose (\cong 42 Degrees);
- $$\label{eq:lambda} \begin{split} \lambda = & \text{angle of vertical stream line deviation from horizontal, must be} \geq 0 \\ & \text{(outside of a bend);} \end{split}$$
- $\tau_0 = \text{bed shear stress} = \gamma \cdot R \cdot S_f;$
- γ = unit weight of water;
- R = hydraulic radius;
- $S_f = friction slope;$
- $\boldsymbol{\theta} = \text{down-slope}$ angle including bed and bank slope;
- η_0 = shear force acting on the rock;
- β = correction for side slope, bed slope, and secondary currents;
- η_1 = correction for side slope, bed slope, and secondary currents; and
- $l_{1,2,3,4}$ = moment arms between riprap particles (canceled through lift and drag assumptions.
- A, B = lever arm ratios. The ratio A/B is assumed to equal 1.

 $\tau = \gamma * R * S$

Using the above equations:

Diameter of large rocks (ft)	D _s =	1	2	2.25	3	3.5	5.6
	$\tau =$	4.9	4.9	4.9	4.9	4.9	4.9
	$\eta_o =$	0.868	0.434	0.386	0.289	0.248	0.155
Assuming parallel streamlines	λ =	0	0	0	0	0	0
Side slope	$\theta_1 =$	0	0	0	0	0	0
	$\theta_0 =$	1.60	1.60	1.60	1.60	1.60	1.60
Since the SIN of zero is zero	$\theta =$	90	90	90	90	90	90
	a _q =	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996
	$\beta =$	0	0	0	0	0	0
	$\eta_1 =$	0.868	0.434	0.386	0.289	0.248	0.155
	SF =	1.1	2.1	2.4	3.1	3.6	5.4

Scour around large rocks - similar to pier scour

$y_{s,p} =$	$2.0 * K_1 * .$	$K_2 * K_3 * K_4 * a^{0.65} * y$	$1^{0.35} * Fr$, 0.43 1	CSU Pier Scour Eq.
Fr	· =	1.			
	$(g * h_m)$	$(1)^{1/2}$	v =	10	Velocity (from Hec-Ras, fps)
			h _m =	2.91	Hydarulic Depth
Fr =	1.03				
			K1	1.1	
			K2	1	
y _{s,p} =	0.83		K3	1.1	
			K4	0.2	
			а		1 Pier Diameter (Rock Diameter, ft)
			y1	4.5	Flow depth (from Hec_Ras)

Conclusion

Based on the analysis above, Rock larger than the D_{84-ESM} would be stable with a factor of safety of 2.4 on the roughened rock ramp. A minimum recommended factor of safety of 1.1 is reached with a rock diameter of 1.0 feet.

Assuming pier type scour around larger boulders, there is the potential of 1.4 ft scour. Since the overall thickness of the roughened ramp will be approximately 3.75 feet, the system is sufficiently armored.

SUBJECT:	Nevada Irrigation District - NID	BY: J. Burgi	CHK'D BY:
	Hemphill Diversion Project	DATE: 3/4/2022	
	Roughened Channel - Manning's Coefficient	PROJECT NO.: 21-125	

The purpose of this calcualtion sheet is to calculate the manning's coefficient for the roughened channel at high flow.

References

• USBR. (2007). Rock Ramp Design Guidelines. Denver: U.S. Department of Interior, Bureau of Reclamation

Information - Input

$\label{eq:QMAX} \begin{array}{l} Q_{MAX} = \\ Q_{100 \ YR} = \\ \end{array}$ Channel Width_{MAX} = Channel Width_{100 \ YR} = \\ S = \end{array}	5000	ft ³ /s	Estimated bank full flow
	15000	ft ³ /s	From FEMA
	83	ft	Bank full width
	600	ft	Approximate floodplain width
	0.028	ft	Roughened Channel Slope
q _{MAX} =	60.24	ft ² /s/ft	
q _{100 YR} =	25.00	ft ² /s/ft	
D _{50 MAX} =	0.90	ft	
D _{84 MAX} =	2.25	ft	
P =	85.2		wetted perimeter
A =	241.4		Area
R =	2.8		Hydarulic Radius
W =	83.00		Top Width
D =	2.91		Hydraulic Depth

Calculation

Depth Independent Roughness for Mild Gradients

 $n = K_u * D_x^{1/6}$

Equation 3-1 (BOR)

n = Channel Roughness

K_u = dimensional coefficient

D_x = representative grain diameter

	Author	K _{u (m)}	K _{u (ft)}	X for D_x	Dx (ft)	Dx (m)	n
	Henderson (1966)	0.038		75	1.96	0.60	0.035
Lane	and Carlson (1955)	0.0473	0.0388	75	1.96	0.60	0.043
	Strickler (1923)	0.041		50	0.90	0.27	0.033
	USACOE (1991)	0.046	0.038	90	3.33	1.01	0.046

Depth Based Roughness

$\frac{1}{\sqrt{f}} = -2.0$	$0 \cdot \log_{10} \left(\frac{k_s}{3.71 \cdot k_s} \right)$	$\frac{1}{D} + \frac{2.51}{\operatorname{Re}\sqrt{f}}$	Equation 3-2 (BOR)
	$\operatorname{Re} = \frac{V \cdot D}{v}$		Equation 3-3 (BOR)
V	4	fps	velocity
D	2.91		Average hydraulic depth (flow area divided by top with)
v	0.000014081	ft2/s	kinematic viscosity
Re	826,098.2		
ks	0.5	height of roug	hness element (0.5*D50)
right side	2.757958605	Calculate right	t side of equation 3-2
left side	2.8	Calculate left	side of equation 3-2
Diff	(0.0)	Use to goal se	eek
f	0.127		

Equation 3-4 (BOR)

Steep Slope Roughness Estimation

<i>n</i> = 0.029	$(D_{50} * S_o)^{0.147}$
D ₅₀ =	0.90 Medium grain size
S _o =	0.028 Slope of ramp
n =	0.0391

Conclusion

Of the analysis listed above for the estimation of the manning's coefficient for a roughened rock channel, the Army Corps of Engineergs appears to be the most conservative. It is recommended that a manning's n - coefficient of **0.045** be used in the hydraulic modeling of the roughened channel.

SUBJECT:	Nevada Irrigation District - NID	BY: J. Burgi	CHK'D BY: M. Cerucci
	Hemphill Diversion Project	DATE: 3/4/2022	
	Low Flow Channel	PROJECT NO.: 21-125	

The purpose of this calculation sheet is to analyze the proposed low flow channel for the roughened channel.

References

Lindeburg, Michael. (2003). Civil Engineering Reference Manual, California, Professional Publications, Inc.
Mefford, Brent. (2014). Pocket Guide to Screening Small Water Diversions, USFS, USFWS, USBOR

Information - Input

Auburn Ravine Design flows: Q95 13.3 cfs

Calculation

Calculate normal depth of flow in low flow channel at low flow

The low flow channel will be a triangular channel with side slopes of 2:1 and depth of 1 ft.

$$Q = \left(\frac{1.49}{n}\right) A\left(R_h^{\frac{2}{3}}\right) S^{\frac{1}{2}}$$

Manning Coeff	n	0.045
hydraulic grade line	S	0.028 ft/ft
bottom width	btm	0 ft
sideslope right	zr	2
sideslope left	zl	2
depth	d	1 ft
Area	A	2.00 sqft
Wetted Perimeter	W	4.47 ft
Hydraulic Radius	R _h	0.45 ft
Velocity	V	3.23 fps
Flow	Q	6.46 cfs

Calculate normal depth of flow in trapazoidal medium flow channel

The medium flow channel will be a trapazoidal channel with 2:1 side slopes, a bottom width of 8 ft, and a depth of 0.75 feet.

$$Q = \left(\frac{1.49}{n}\right) A\left(R_h^{\frac{2}{3}}\right) S^{\frac{1}{2}}$$

Manning Coeff	n	0.045
hydraulic grade line	S	0.028 ft/ft
bottom width	btm	8 ft
sideslope right	zr	2
sideslope left	zl	2
depth	d	0.75 ft
Area	A	7.13 sqft
Wetted Perimeter	W	11.35 ft
Hydraulic Radius	R _h	0.63 ft
Velocity	V	4.05 fps
Flow	Q	28.86 cfs

Conclusion

The low flow triangual channel will reach capacity at normal flow depth of 1 foot at a flow rate of 6.5 cfs. The trapazoidal medium flow channel will reach capacity at normal flow depth of 0.75 at a flow rate of 28.7 cfs. Adding the triangular flow to the trapazoidal channel flow results in a flow rate of 35.2 cfs.

SUBJECT:	Nevada Irrigation District - NID	BY: R. Hudson CHK'D BY: J. Burgi
	Hemphill Diversion Project	DATE: 3/4/2022
	Transition Rock Sizing	PROJECT NO.: 21-125

The purpose of this calcualtion sheet is to calculate the Rock Sizing for the section of river downstream of the roughened channel.

References

• USBR. (2009). Hydraulic Design of Stilling Basin and Energy Dissipators Engineering Monograph No. 25. USBR.

Information - Input

Q _{MAX} = Q _{100 YR} =	5000 15000	ft ³ /s ft ³ /s	Estimated bank full flow From FEMA
V _{MAX} =	10.61	ft/s	From HEC-RAS model at location where rock channel ends
V _{100 YR} =	13.94	ft/s	From HEC-RAS model at location where rock channel ends

Calculation

Hydraulic modeling of the roughened channel and transition into the downstream natrual stream channel indicate that there will not be a hydraulic jump at the 100-yr flow condition. Therefore the transition from the roughened channel to the natural stream will be protected using design criteria for the protection of stream channel downstream of a stilling basin where most of the energy has been removed from the flow, however flow is characterized by high velocity flow including surges and waves. The following chart has been developed by the USBR(2009) to guide the designer in sizing riprap downstream from stilling basins.

Figure 1. Minimum Riprap Sizing

Using Figure 1 above, the required stone size is as follows:

d _{100 YR} =	27.8	in
d _{BANKFULL} =	16.1	in
W _{100 YR} =	1100	lbs
W _{BANKFULL} =	210	Ibs

Conclusion

Research conducted by USBR in the use of this chart established that a well-graded riprap layer containing about 40 percent of the rock pices smaller than the required size as shown above was as stable, or more stable than a single stone of the required size. The proposed streambed rock distribution shown in the Rock Gradation calculation for the roughened channel suggests a rock gradation that would meet the required stone size calaculated above.

SUBJECT:	Nevada Irrigation District - NID	BY: J. Burgi	CHK'D BY:
	Hemphill Diversion Project	DATE: 3/14/2022	
	Fish Screen Approach Velocity	PROJECT NO.: 21-125	

The purpose of this calcualtion sheet is to analize the approach velocity at the cone fish screen at varying depths of water and varying flow rates.

References

• ISI (2022) Data Sheet provided to McMillen Jacobs via e-mail on 2/23/2022

Information - Input

Q _{min}	3	cfs
Q _{design}	6	cfs
Q _{max}	18	cfs

Calculation

Water depth and approach velocity calculations in front of the fish screen throughout range of diversion flows

Based on flow data provided by manufacturer (ISI 2022):

	Approach Vel.			
Depth	0.2	0.33	0.4	
3	0.4	0.6	0.8	
6	2.9	4.8	5.9	
9	5.3	8.7	10.6	
12	7.4	12.3	14.9	
15	9.4	15.5	18.8	
18	11.1	18.4	22.3	
21	12.7	21	25.4	
24	14.1	23.2	28.1	
27	15.2	25.1	30.4	
30	16.2	26.7	32.3	
33	16.9	27.9	33.9	
36	17.1	28.2	34.2	

The following table is made up of data from the figure above.

This data can be re-plotted for Approach Velocity vs. Flow Rate at differing depths of water at the screen.

The equation for the linear relationship between approach velocity and flow rate at varying depths of water are used to develop the following table and figure.

	Flow Rate (cfs)								
Depth	3	4	5	6	8	10	12	16	18
6	0.2076	0.2745	0.3414	0.4083	0.5421	0.6759	0.8097	1.0773	1.2111
9	0.1135	0.1513	0.1891	0.2269	0.3025	0.3781	0.4537	0.6049	0.6805
12	0.0824	0.1090	0.1356	0.1622	0.2154	0.2686	0.3218	0.4282	0.4814
18	0.0555	0.0734	0.0913	0.1092	0.1450	0.1808	0.2166	0.2882	0.3240
21	0.0471	0.0628	0.0785	0.0942	0.1256	0.1570	0.1884	0.2512	0.2826

Conclusion

For the minimum diversion of 3 cfs, approach velocities will be significantly below the CDFW criteria of 0.33 fps throughout the range of depths. For the normal diversion of 6 cfs, approch velocities will be below the CDFW criteria once the depth of water on the cone screen is above 7 inches (WSEL 197.08 ft). At the max flow rate of 18 cfs, approach velocities will be below the CDFW criteria when the depth of water at the cone screen is greater than 17 inches (WSEL 197.92 ft).

SUBJECT: Nevada Irrigation District - NID

Hemphill Diversion Project Stream Flow vs. Depth Rating Curve

Olican now vs. Deplinta

Purpose

The purpose of this calcualtion sheet is to develop a stream flow rating curve.

References

Information - Input

Based on 2-D HEC-RAS Model,

Flow (cfs)	WSEL (ft)
5	197.906
10	198.274
20	198.577
50	198.977
100	199.221
250	199.694
500	200.259
1000	201.108
2500	202.875
5000	204.716
7500	205.459
10000	206.103
15000	207.193

Calculation

Conclusion

Based on output from the current 2-D HEC-RAS model for the proposed roughend channel, the above rating curve estimates the water surface elevation at the Cone Screen Structure for flows in Auburn Ravine ranging from 10 cfs to 15,000 cfs.

BY: J. Burgi CHK'D BY: _____ DATE: _____ PROJECT NO.: 21-125