Calculation Cover Sheet

Project: Hemphill Diversion Project
Client: Nevada Irrigation District - NID
Proj. No.21-125
Title: Hemphill Hydraulics - 90\% Submittal
Prepared By, Name: J. Burgi

Prepared By, Signature: \qquad Date: 3/4/2022
Peer Reviewed By, Name:
M. Cerucci

Peer Reviewed, Signature: \qquad Date:

BY: J. Burgi
DATE: $3 / 4 / 202$
PROJECT NO.: $21-125$

Table of Content

Hydraulics	Page
Hemphill Canal Entrance Headloss	3

Hemphill Canal Headloss5
Roughened Channel Rock Sizing 7
Rock Gradation 10
Large Rock Stability 12
Manning's Coefficient 14
Low Flow Channel Hydraulics 16
Transition Rock Sizing 18
Fish Screen Approach Velocity20
Auburn Ravine Rating Curve22

SUBJECT: Nevada Irrigation District - NID
Hemphill Diversion Project
Hemphill Canal Entrance Head Loss

BY: J. Burgi CHK'D BY: M. Cerucci
DATE: 3/4/2022
PROJECT NO.: 21-125

Purpose

The purpose of this calculation sheet is to identify the hydraulic grade line from Auburn Ravine to the canal.

References

-Lindeburg, Michael. (2003). Civil Engineering Reference Manual, California, Professional Publications, Inc.

- Mefford, Brent. (2014). Pocket Guide to Screening Small Water Diversions, USFS, USFWS, USBOR

Information - Input

Hemphill canal flow conditions	
$Q_{\text {min }}$	3 cfs
$Q_{\text {design }}$	6 cfs
$Q_{\text {max }}$	18 cfs

Auburn Ravine Water Surface Elevation

$$
\text { WSEL }_{\text {min }} \quad 198.5
$$

WSEL $_{\text {design }}$
WSEL $_{\text {max }}$

Calculation

Headloss through Cone Screen

$$
\begin{equation*}
h=\frac{10 V_{a}^{2}}{64} \tag{Mefford,2014}
\end{equation*}
$$

Va $\quad 0.33 \mathrm{fps} \quad$ Max screen approach velocity

Headloss through pipe from cone screen to canal.

$$
h=\frac{3.022 v^{1.85} L}{C^{1.85} D^{1.17}}
$$

V		fps
L	75	ft
C	140	
D	3	ft

$\mathrm{Q}(\mathrm{cfs})$	$\mathrm{v}(\mathrm{fps})$	$\mathrm{h}(\mathrm{ft})$
3	0.424	0.0014
6	0.849	0.0050
18	2.546	0.0378

Minor Headloss in pipe from cone screen to canal

$$
h_{m}=K * \frac{v^{2}}{2 g}
$$

Q (cfs)	$\mathrm{v}(\mathrm{fps})$	$\mathrm{v}^{2} / 2 \mathrm{~g}$
3	0.424	0.0028
6	0.849	0.0112
18	2.546	0.1007

K

0.9	90 elbow
1	exit
1	entrance

Minor losses in pipe include one 90 degree bend, two 45 degree bends and one exit.

Q (cfs)	Total minor loss (ft)
3	0.008
6	0.032
18	0.292

Conclusion

Total losses from Auburn Ravine to the Canal include a weir, the cone screen, pipe, minor losses through the

	3 cfs	6 cfs	18 cfs
Cone loss (ft)	0.02	0.02	0.02
Pipe loss (ft)	0.00	0.00	0.04
Minor Loss (ft)	0.01	0.03	0.29
Total (ft)	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 3 5}$

Q	h 1	h 2	h 3	Total
1	0.017	0.000	0.001	0.018
2	0.017	0.001	0.004	0.021
3	0.017	0.001	0.008	0.027
4	0.017	0.002	0.014	0.034
5	0.017	0.004	0.023	0.043
6	0.017	0.005	0.032	0.054
7	0.017	0.007	0.044	0.068
8	0.017	0.008	0.058	0.083
9	0.017	0.010	0.073	0.101
10	0.017	0.013	0.090	0.120
11	0.017	0.015	0.109	0.141
12	0.017	0.018	0.130	0.165
13	0.017	0.021	0.152	0.190
14	0.017	0.024	0.177	0.217
15	0.017	0.027	0.203	0.247
16	0.017	0.030	0.231	0.278
17	0.017	0.034	0.260	0.312
18	0.017	0.038	0.292	0.347
19	0.017	0.042	0.325	0.384
20	0.017	0.046	0.361	0.423

SUBJECT: Nevada Irrigation District - NID
BY: J. Burgi CHK'D BY: M. Cerucci
Hemphill Diversion Project
Hemphill Canal Head Loss
DATE: $3 / 4 / 2022$
PROJECT NO.: 21-125

Purpose

The purpose of this calculation sheet is to identify the hydraulic grade line between the first Turkey Creek Golf Club culvert and the outlet from the fish screen.

References

- Tullis, J. Paul. (1989). Hydraulics of Pipelines, Pumps, Valves, Cavitation, Transients. New York: John Wiley \& Sons.
- Miller, D.S. (1990). Internal Flow Systems, Design and Performance Prediction. Houston: Gulf Publishing Company.

Information - Input

Hemphill canal flow conditions

$\mathrm{Q}_{\text {min }}$ | | 3 cfs | |
| :---: | :---: | :--- |
| $\mathrm{Q}_{\text {design }}$ | 6 cfs | |
| $\mathrm{Q}_{\max }$ | 18 cfs | |
| Hemphill Canal | | |
| W_{b} | 7 ft | bot width |
| z | $1: 1$ | side slope |
| S | $0.0002 \mathrm{ft} / \mathrm{ft}$ | Slope for end of proposed fish screen to culvert |
| L | 790 ft | Distance from culvert to outlet |
| h | 0.158 | Change in elevation at the bottom of canal |
| n | 0.025 | Manning's coefficient |

Calculation

Based on HY-8 analysis of first culvert (located approximately 790 feet downstream from the proposed fish screen, flow in the culvert is outlet controled, and the WSE at the entrance of the culvert is calculated as:

Flow cfs		WSE ft
3	197.26	depth ft
6	197.65	0.92
18	198.72	2.38

Analysis will start from the hydraulically controled downstream end. The first culvert on Hemphill canal is approximatlet 790 feet downstream.

Calculation of Normal Depth between fish screen and culvert.

$$
\begin{aligned}
Q & =\frac{1.486}{n} * A * R^{2 / 3} * S^{1 / 2} \\
A & =\frac{Q * n}{1.49 * S^{1 / 2} * R^{2 / 3}} \\
A & =d *(w+z d) \\
P & =w+2 d\left(1+t^{2}\right)^{0.5}
\end{aligned}
$$

	Normal Depth d, ft	$\mathrm{A}, \mathrm{ft}^{2}$	P, ft	R, fr	V, fps
3.00	0.81	6.34	9.29	0.68	0.47
6.00	1.09	8.77	10.07	0.87	0.68
18.00	1.72	15.03	11.87	1.27	1.20

Standard step backwater calculation to find length of canal required to transition from flow depth at the culvert entrance to normal depth.

Backwater calc for

6 cfs

d (ft)	A (ft2)	V (ft/s)	E (ft)	delta E	R (ft)	Sf	Avg -Sf	So-Avg Sf	dl (ft)	Cum Dist	Elev.
1.31	10.89	0.55	1.31		1.01689457	8.41E-05					197.65
				-0.02			8.63E-05	1.14E-04	-174.46	-174.46	
1.29	10.69	0.56	1.29		1.00426617	8.86E-05					197.63
				-0.02			$9.10 \mathrm{E}-05$	$1.09 \mathrm{E}-04$	-181.85	-356.30	
1.27	10.50	0.57	1.28		0.9915784	$9.34 \mathrm{E}-05$					197.61
				-0.02			$9.60 \mathrm{E}-05$	$1.04 \mathrm{E}-04$	-190.49	-546.80	
1.25	10.31	0.58	1.26		0.97883032	$9.86 \mathrm{E}-05$					197.59
				-0.02			$1.01 \mathrm{E}-04$	$9.86 \mathrm{E}-05$	-200.73	-747.53	
1.23	10.12	0.59	1.24		0.96602094	1.04E-04					197.57
				-0.02			$1.07 \mathrm{E}-04$	$9.29 \mathrm{E}-05$	-213.03	-960.56	
1.21	9.93	0.60	1.22		0.95314928	1.10E-04					197.55
				-0.02			1.13E-04	8.67E-05	-228.05	-1188.61	
1.19	9.75	0.62	1.20		0.9402143	1.16E-04					197.53
				-0.02			$1.20 \mathrm{E}-04$	8.01E-05	-246.78	-1435.38	
1.17	9.56	0.63	1.18		0.92721497	1.23E-04					197.51
				-0.02			$1.27 \mathrm{E}-04$	$7.30 \mathrm{E}-05$	-270.75	-1706.14	
1.15	9.37	0.64	1.16		0.91415023	1.31E-04					197.49
				-0.02			$1.35 \mathrm{E}-04$	$6.53 \mathrm{E}-05$	-302.46	-2008.60	
1.13	9.19	0.65	1.14		0.90101898	$1.39 \mathrm{E}-04$					197.47
				-0.02			1.43E-04	$5.70 \mathrm{E}-05$	-346.31	-2354.90	
1.11	9.00	0.67	1.12		0.88782011	1.47E-04					197.45
				-0.02			1.52E-04	$4.80 \mathrm{E}-05$	-410.76	-2765.66	
1.09	8.82	0.68	1.10		0.87455248	1.57E-04					197.43

Backwater calc for 18 cfs

d (ft)	A (ft2)	V (ft/s)	E (ft)	delta E	R (ft)	Sf	Avg -Sf	So-Avg Sf	dl (ft)	Cum Dist	Elev.
2.38	22.32	0.81	2.39		1.6257616	1.07E-05					198.72
				-0.05			1.11E-05	1.89E-04	-261.79	-261.79	
2.33	21.74	0.83	2.34		1.59959704	1.15E-05					198.67
				-0.05			$1.20 \mathrm{E}-05$	$1.88 \mathrm{E}-04$	-262.78	-524.57	
2.28	21.16	0.85	2.29		1.57325399	$1.24 \mathrm{E}-05$					198.62
				-0.05			1.29E-05	1.87E-04	-263.89	-788.46	
2.23	20.58	0.87	2.24		1.54672675	$1.34 \mathrm{E}-05$					198.57
				-0.05			$1.40 \mathrm{E}-05$	1.86E-04	-265.13	-1053.59	
2.18	20.01	0.90	2.19		1.52000941	$1.46 \mathrm{E}-05$					198.52
				-0.05			1.52E-05	1.85E-04	-266.51	-1320.10	
2.13	19.45	0.93	2.14		1.49309576	$1.58 \mathrm{E}-05$					198.47
				-0.05			$1.65 \mathrm{E}-05$	1.84E-04	-268.07	-1588.17	
2.08	18.89	0.95	2.09		1.46597933	1.72E-05					198.42
				-0.05			1.79E-05	1.82E-04	-269.83	-1858.00	
2.03	18.33	0.98	2.04		1.43865339	1.87E-05					198.37
				-0.05			$1.95 \mathrm{E}-05$	$1.80 \mathrm{E}-04$	-271.82	-2129.82	
1.98	17.78	1.01	2.00		1.41111086	$2.04 \mathrm{E}-05$					198.32
				-0.05			$2.13 \mathrm{E}-05$	1.79E-04	-274.09	-2403.90	
1.93	17.23	1.04	1.95		1.38334438	$2.23 \mathrm{E}-05$					198.27
				-0.05			2.33E-05	1.77E-04	-276.68	-2680.58	
1.88	16.69	1.08	1.90		1.35534624	$2.44 \mathrm{E}-05$					198.22
				-0.05			$2.56 \mathrm{E}-05$	$1.74 \mathrm{E}-04$	-279.67	-2960.25	
1.83	16.16	1.11	1.85		1.32710835	$2.68 \mathrm{E}-05$					198.17
				-0.05			$2.81 \mathrm{E}-05$	1.72E-04	-283.13	-3243.38	
1.78	15.63	1.15	1.80		1.29862228	$2.94 \mathrm{E}-05$					198.12
				-0.05			$3.10 \mathrm{E}-05$	1.69E-04	-287.17	-3530.55	
1.73	15.10	1.19	1.75		1.26987915	$3.25 \mathrm{E}-05$					198.07

Conclusion

The cumulative distance to transition from known flow depth of 1.31 feet (6 cfs) at the Turkey Creek Golf Club culvert to a calculated normal depth of 1.09 feet (6 cfs) results in a length of $2,765.66$ feet. The proposed fish screen will be located approximately 790 feet upstream of the culvert. Therefore, normal depth will not be reached, and flow at the outlet of the fish screen will be controled by the flow conditions in the culvert. The calculated depth at normal flow of 6 cfs at the outlet from the fish screen is 1.23 feet. For the max flow of 18 cfs, the depth at the outlet from the fish screen is 2.23 ft .

Purpose

The purpose of this calcualtion sheet is to compare different methods of calculating D50 based on CDFW XII methods for rock ramps and the Bureau of Reclemation Rock Ramp sizing methods.

References

- CDFW. (2009). California Salmonid Stream Habitat Restoration Manual - Part XII Fish Passage and Implementation. CDFW.
- USBR. (2007). Rock Ramp Design Guidelines. Denver: U.S. Department of Interior, Bureau of Reclamation

Information - Input

$\mathrm{Q}_{\mathrm{MAX}}=$	5000	$\mathrm{ft}^{3} / \mathrm{s}$	Estimated bank full flow
$\mathrm{Q}_{100 \mathrm{YR}}=$	15000	$\mathrm{ft}^{3} / \mathrm{s}$	From FEMA
Channel Width WAX $=$	83	ft	Bank full width
Channel Width $\mathrm{ft}_{100 \mathrm{YR}}=$	600	ft	Approximate floodplain width
$\mathrm{S}=$	0.028	$\mathrm{ft} / \mathrm{ft}$	Roughened Channel Slope
$\mathrm{q}_{\mathrm{MAX}}=$	60.24	$\mathrm{ft}^{2} / \mathrm{s} / \mathrm{ft}$	
$\mathrm{q}_{100 \mathrm{YR}}=$	25.00	$\mathrm{ft}^{2} / \mathrm{s} / \mathrm{ft}$	

Calculation

CDFW XII

Equation XII-I ACOE(1994)

$$
\begin{aligned}
& D_{30-A C O E}=\frac{1.95 * S^{0.555} *(1.25 q)^{\frac{2}{3}}}{g^{\frac{1}{3}}} \\
& D_{84-E S M}=1.5 * D_{30-A S C O E} \\
& D_{50-E S M}=0.4 * D_{84-E S M}
\end{aligned}
$$

Where:

$$
\mathrm{D}_{30-\mathrm{ACOE}}=\mathrm{D} 30 \text { stable particle size based on rock gradation provided by ACOE } 1994 \text { (ft) }
$$

$$
\mathrm{S}=\text { Hydraulic slope (ft/ft) }
$$

$$
D_{84-E S M}=1.5 * D_{30-A S C O E} \quad \begin{aligned}
& \mathrm{q}=\text { unit discharge within active channel at stable bed design flow (cfs/ft) } \\
& \mathrm{a}=\text { aravitation acceleration }\left(322 \mathrm{ft} / \mathrm{s}^{2}\right)
\end{aligned}
$$

$$
\mathrm{g}=\text { gravitation acceleration }\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)
$$

Max		
S =	0.028	ft/ft
$\mathrm{q}_{\text {MAX }}=$	60.24	$\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$
$\mathrm{g}=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{D}_{30 \text {-ACOe max }}=$	1.502	ft
$\mathrm{D}_{84 \text {-ESM MAX }}=$	2.254	ft
$\mathrm{D}_{50-\mathrm{ESM} \text { MAX }}=$	0.901	ft

100 Year		
S =	0.028	
$\mathrm{q}_{100 \mathrm{YR}}=$	25.00	$\mathrm{ft} 3 / \mathrm{s} / \mathrm{ft}$
$\mathrm{g}=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{D}_{30-\mathrm{ACOE} 100 \mathrm{YR}}=$	0.836	ft
$\mathrm{D}_{84-\mathrm{ESM}} 100 \mathrm{YR}=$	1.254	ft
$\mathrm{D}_{50-E S M} 100 \mathrm{YR}=$	0.502	ft

BOR
Abt and Johnson (1991) Equation 4-2

$$
\begin{aligned}
& q_{\text {sizing }}=1.35 * q_{\text {design }} \\
& D_{50}=\varphi_{e} * \varphi_{c} * a * 5.23 * S^{0.43} q_{\text {sizing }}{ }^{0.56} \\
& \text { Max } \\
& \text { Mare: } \\
& \mathrm{q}_{\text {Sizing MAX }}
\end{aligned}
$$

$$
D_{50}=D_{50} \text { median diameter of rock layer (in) }
$$

$\phi \mathrm{e}=$ coefficient for empirical envelope on the regression relationship $=1.2$
$\phi c=$ coefficient of flow concentration due to channelization within revetment
a = shape factor for rounded versus angular material
$\mathrm{S}=$ profile slope of rock ramp (ft/ft)
$\mathrm{q}_{\text {sizing }}=$ design unit discharge ($\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$)

100 Year		
$\mathrm{q}_{\text {Sizing } 100 \mathrm{YR}}=$	33.8	$\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$
$\phi \mathrm{e}=$	1.2	
$\phi \mathrm{c}=$	1.2	assuming sheet flow
$\mathrm{a}=$	1.4	rounded material
$\mathrm{S}=$	0.028	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{D}_{50100 \mathrm{YR}}=$	16.26	in
$\mathrm{D}_{50100 \mathrm{YR}}=$	1.35	ft

BOR
Ullmann (2000) Equation 4-5

$$
q_{\text {sizing }}=1.35 * q_{\text {design }}
$$

$$
D_{50}=6.84 * S^{0.43} * q^{0.56} * C_{u}^{0.25} *(1.12 * R+0.39)
$$

Where:
$D_{50}=D_{50}$ median diameter of rock layer (in)
$\mathrm{S}=$ profile slope of rock ramp (ft/ft)
$\mathrm{q}_{\text {sizing }}=$ design unit discharge ($\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$)
$C_{u}=$ Coefficient of uniformity, D_{60} / D_{10}
$R=$ percent roundness in decimal form

100 Year		
$\mathrm{q}_{\text {Sizing } 100 \mathrm{YR}}=$	33.8	$\mathrm{ft} / \mathrm{s} / \mathrm{ft}$
$\mathrm{S}=$	0.028	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{C}_{\mathrm{u}}=$	2.4	
$\mathrm{R}=$	0.7	
$\mathrm{D}_{50 \text { 100 YR }}$	$=$	15.41
$\mathrm{D}_{50 \text { 10 } \mathrm{YR}}=$	1.28	ft

BOR
Ferro (1999) Equation 4-6

$$
\begin{aligned}
& D_{50}=B *\left(\varphi_{e} * \frac{0.95}{\left(\sigma_{g}^{2}\right)^{0.562}} *\left(\frac{Q * S}{B^{\frac{5}{2}} * g^{\frac{1}{2}}} * \frac{\gamma_{s}-\gamma}{\gamma}\right)^{\frac{1}{2}} \quad\right. \text { Where: } \\
& \mathrm{D}_{50}=\mathrm{D}_{50} \text { median diameter of rock layer (in) } \\
& \mathrm{S}=\text { profile slope of rock ramp }(\mathrm{ft} / \mathrm{ft}) \\
& \mathrm{Q}=\text { total discharge }\left(\mathrm{ft}^{3} / \mathrm{s}\right) \\
& \phi \mathrm{e}=\text { coefficient for empirical data in regression relationship }=1.4 \\
& \sigma_{\mathrm{g}}{ }^{2}=\text { geometric variance of gradation, } \mathrm{D}_{84} / \mathrm{D}_{16} \\
& \mathrm{~g}=\text { gravitation acceleration }\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right) \\
& \gamma_{\mathrm{s}}=\text { specific weight of stone }(\mathrm{lbs} / \mathrm{ff}) \\
& \gamma=\text { specific weight of water }\left(\mathrm{lbs} / \mathrm{ff}^{3}\right)
\end{aligned}
$$

	$M a x$		
B	$=$	83	ft
S	$=$	0.028	$\mathrm{ft} / \mathrm{ft}$
Q	$=$	5000	$\mathrm{ft}^{3} / \mathrm{s}$
$\phi \mathrm{e}$	$=$	1.4	
$\sigma_{\mathrm{g}}{ }^{2}$	$=$	4	
g	$=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{\gamma}_{\mathrm{s}}$	$=$	156.075	$\mathrm{lbs} / \mathrm{ft}^{3}$
$\mathrm{\gamma}$	$=$	62.43	$\mathrm{lbs} / \mathrm{ft}^{3}$
$\mathrm{D}_{50 \mathrm{MAX}}$	$=$	1.230	ft

100 Year		
B =	600	ft
S =	0.028	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{Q}=$	15000	$\mathrm{ft}^{3} / \mathrm{s}$
фе $=$	1.4	
$\sigma_{\mathrm{g}}{ }^{2}=$	4	
$\mathrm{g}=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$
$\gamma_{\mathrm{s}}=$	156.075	$\mathrm{lbs} / \mathrm{ft}^{3}$
$\gamma=$	62.43	$\mathrm{lbs} / \mathrm{ft}^{3}$
$\mathrm{D}_{50100 \mathrm{YR}}=$	1.299	ft

BOR
Robinson et al. (1998) Equation 10-6

$$
\begin{aligned}
& q_{\text {sizing }}=1.35 * q_{\text {design }} \\
& D_{50}=\left(\frac{q_{\text {sizing }}}{9.76 * 10^{-7} * S^{-1.50}}\right)^{\frac{1}{1.89}}
\end{aligned}
$$

Where

$$
\begin{aligned}
\mathrm{D}_{50} & =\mathrm{D}_{50} \text { median diameter of rock layer (in) } \\
\mathrm{S} & =\text { profile slope of rock ramp }(\mathrm{ft} / \mathrm{ft}) \\
\mathrm{q}_{\text {sizing }} & =\text { design unit discharge }\left(\mathrm{ft}^{\mathrm{s}} / \mathrm{s} / \mathrm{ft}\right)
\end{aligned}
$$

$\mathrm{D}_{50 \text { MAX }}=$	258.49	mm
$\mathrm{D}_{50 \text { MAX }}=$	10.18	in
$\mathrm{D}_{50 \text { MAX }}=$	0.85	ft

100 Year		
$\mathrm{S}=$	0.028	$\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$
$\mathrm{q}_{\text {sizing }}$	$=$	$33.75 \mathrm{ft} / \mathrm{ft}$
$\mathrm{D}_{50100 \mathrm{YR}}=$	162.315 mm	
$\mathrm{D}_{50100 \mathrm{YR}}=$	6.390	in
$\mathrm{D}_{50100 \mathrm{YR}}=$	0.533 ft	

BOR
USACE Bed (1991) Equation 4-8 and 4-9

$$
\begin{aligned}
D_{30} & =\frac{1.95 * S^{0.555} *(1.25 q)^{\frac{2}{3}}}{g^{\frac{1}{3}}} \\
D_{50} & =D_{30} *\left(\frac{D_{85}}{D_{15}}\right)^{\frac{1}{3}}
\end{aligned}
$$

Where:

D_{30}	$=$ Rock diameter for which 30% is smaller by mass (ft)
S	$=$ Slope of rock ramp (ft/ft)
q	$=$ unit discharge within active channel at stable bed design flow (cfs/ft)
g	$=$ gravitation acceleration $\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)$
D_{85}	$=$ Rock diameter for which 85% is smaller by mass (ft)
D_{15}	$=$ Rock diameter for which 85% is smaller by mass (ft)

Max		
S =	0.028	ft/ft
$\mathrm{q}_{\text {max }}=$	60.24	$\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$
$\mathrm{g}=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{D}_{30 \mathrm{max}}=$	1.502	ft
$\mathrm{D}_{85} / \mathrm{D}_{15}=$	2.7	
$\mathrm{D}_{50 \mathrm{mAX}}=$	2.092	ft

100 Year		
S =	0.028	
$\mathrm{q}_{100 \mathrm{YR}}=$	25.00	$\mathrm{ft} 3 / \mathrm{s} / \mathrm{ft}$
$\mathrm{g}=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{D}_{30100 \mathrm{YR}}=$	0.836	ft
$\mathrm{D}_{85} / \mathrm{D}_{15}=$	2.7	
$\mathrm{D}_{50100 \mathrm{YR}}=$	1.164	ft

Conclusion

Reference	Equation	D_{50} (ft)		D_{50} (in)	
		Max	100 Yr	Max	100 Yr
CDFW XII	Equation XII-I ACOE(1994)	0.90	0.50	10.82	6.02
BOR	Abt and Johnson (1991) Equation 4-2	2.22	1.35	26.61	16.26
BOR	Ullmann (2000) Equation 4-5	2.10	1.28	25.22	15.41
BOR	Ferro (1999) Equation 4-6	1.23	1.30	14.76	15.59
BOR	Robinson et al. (1998) Equation 10-6	0.85	0.53	10.18	6.39
BOR	USACE Bed (1991) Equation 4-8 and 4-8	2.09	1.16	25.10	13.97
	$\mathrm{D}_{50-\mathrm{ESM}}$	0.90			

The CDFW rock sizing equation was compared with five other rock sizing equations for both the 100 -year flow as defined by FEMA and a "max channel" flow estimating the maximum flow at bankfull flow. Due to the spread of the water for the 100yr flow, the channel velocities may be lower than that of the bankfull flow. As a result the rock sizes for the max flow are greater than those for the $100-\mathrm{yr}$.

The D50's ranged from $0.90 \mathrm{ft}-2.22 \mathrm{ft}$ with the CDFW method returning the smallest rock. The average rock size for the max flow is 1.5^{\prime} (18 inches).

The CDFW D_{50} is smaller partially due to the specific gadation for Engineered Streambed Material (ESM). While the D_{50} is smaller, the gradiation calls for a larger D_{100} (as shown in the following pages) than what would be found in a normal rock gradation. These larger D_{100} rocks will provide sufficient stability for the smaller rock and as such, will provide a stable roughened channel.

Design will move forward with $\mathrm{D}_{50-\text {-SM }}$ of 0.90 ft .

SUBJECT: Nevada Irrigation District - NID
Hemphill Diversion Project
Roughened Channel - Rock Gradation

BY: R. Hudson
DATE: $3 / 4 / 2022$
PROJECT NO.: 21-125

Purpose

The purpose of this calcualtion sheet is to calculate the Rock Gradation for the roughened channel based on the D50 calculated on the preveous calculation sheet.

References

- CDFW. (2009). California Salmonid Stream Habitat Restoration Manual - Part XII Fish Passage and Implementation. CDFW.

Information - Input

$\mathrm{Q}_{\text {MAX }}=$	5000	$\mathrm{ft}^{3} / \mathrm{s}$	Estimated bank full flow
Channel Width max $=$	83	ft	Bank full width
$S=$	0.028	$\mathrm{ft} / \mathrm{ft}$	Roughened Channel Slope
$\mathrm{q}_{\text {max }}=$	60.24	$\mathrm{ft}^{2} / \mathrm{s} / \mathrm{ft}$	
$\mathrm{D}_{50 \mathrm{ESM}}=$	0.90	ft	

Calculation

CDFW XII

Equation XII-I ACOE(1994)

$$
\begin{aligned}
D_{30-A C O E} & =\frac{1.95 * S^{0.555} *(1.25 q)^{\frac{2}{3}}}{g^{\frac{1}{3}}} \\
D_{84-E S M} & =1.5 * D_{30-A S C O E} \\
D_{50-E S M} & =0.4 * D_{84-E S M} \\
D_{100-E S M} & =2.5 * D_{84-E S M}
\end{aligned}
$$

Max		
$\mathrm{S}=$	0.028	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{q}_{\text {MAX }}$	$=$	60.24
$\mathrm{ft} / \mathrm{s} / \mathrm{ft}$		
$\mathrm{g}=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$

$\mathrm{D}_{30 \text {-ACOE MAX }}=1.502 \mathrm{ft}$

$\mathrm{D}_{84-\text { ESM MAX }}$	$=$	2.254
$\mathrm{D}_{50-\text { ESM MAX }}$	ft	
$\mathrm{D}_{100-\text { ESM MAX }}$	$=$	0.901
ft		
	5.634	ft

CDFW XII

Equation XII-2 ACOE(1994)

$$
\begin{aligned}
D_{16-E S M}=0.32^{\frac{1}{n}} D_{50-E S M} & \begin{aligned}
& \text { Where: } \\
& \mathrm{D}_{50-E S M}= \\
& \mathrm{n}=\text { design partical-size distribution curve between } 0.45-0.7 . \mathrm{n} \\
& \text { value should result in D8-ESM to be approximately } 2 \mathrm{~mm} \text {. If it }
\end{aligned} \\
& \text { fails to, additional fines should be added to the mix to achieve } \\
& \text { the recommended } 5 \text { to } 10 \% \text { fines in the final mix }
\end{aligned}
$$

Max		
$\mathrm{n}=$	0.45	$\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$
$\mathrm{D}_{50-\text { ESM MAX }}=$	0.90	ft
$\mathrm{D}_{16-\text { ESM MAX }}=$	0.072	ft

CDFW XII

Equation XII-3 ACOE(1994)

$$
D_{8-E S M}=0.16^{\frac{1}{n}} D_{50-E S M}
$$

Where:
$D_{50-E S M}=D_{50}$ median diameter of rock layer (ft)
$\mathrm{n}=$ design partical-size distribution curve between 0.45-0.7. n value should result in D8-ESM to be approximately 2 mm . If it fails to, additional fines should be added to the mix to achieve the recommended 5 to 10% fines in the final mix

Max		
$\mathrm{n}=$	0.45	$\mathrm{ft}^{3} / \mathrm{s} / \mathrm{ft}$
$\mathrm{D}_{50-\text { ESM MAX }}=$	0.90	ft

$$
\mathrm{D}_{8 \text {-ESM MAX }}=0.015 \mathrm{ft} \quad \text { Additional fines requireı }
$$

CDFW XII

Engineered Streambed Material Thickness

$$
\begin{array}{ll}
E S M_{\text {Thickness }}=0.67 D_{100-E S M} & \text { Where: } \\
& \mathrm{D}_{100-E S M}=\mathrm{D}_{100} \text { median diameter of rock layer (ft) }
\end{array}
$$

Max		
$\mathrm{D}_{\text {100-ESM MAX }}=$	5.63 ft	
ESM $_{\text {Thickness-MAX }}=$	3.77	ft

Conclusion

Rock Gradation	Max	Max
	Diameter (ft)	Diameter (in)
D100-ESM MAX $=$	5.63	67.61
D84-ESM MAX $=$	2.25	27.04
D50-ESM MAX $=$	0.90	10.82
D30-ACOE MAX $=$	1.50	18.03
D16-ESM MAX $=$	0.07	0.86
D8-ESM MAX $=$	0.02	0.18
ESMThickness $=$	3.77	45.30

Rock Group	$\%$	\% passing 100	inches	Installation Method
A	8	92	$50-67$	A
B	4	88	$35-50$	A
C	4	84	$24-35$	A
D	8	76	$18-24$	A
E	9	67	$9-18$	A
F	17	50	$9-18$	B
G	34	16	$2-9$	B
H	8	8	$2 m m-2 i n$	B
I	8	0	$<2 m m$	B

The CDFW guidance for the sizing of the D100 material results in rocks that are excessivly large for the scale of this project.
An analysis of the stability of the rocks was completed on these large rocks (next page) finding that rock with diameter of 5.63 ft results in a factor of safety of 5.4. The D84 material with diameter of 2.25 ft , results in a factor of safety of 2.4. (see Large Rock Stability calcs).

Based on the results of the analysis of the factor of safety, we have reduced the diameter of the D100 material to $42^{\prime \prime}$ (3.5 ft) with

Rock Group	\%	\% passing		$\begin{array}{\|c} \hline \text { Installatio } \\ n \\ \text { Method } \\ \hline \end{array}$
		100	inches	
A	8	92	42-35	A
B	7	85	24-35	A
C	7	78	18-24	A
D	10	68	11-18	A
E	18	50	11-18	B
F	34	16	2-9	B
G	8	8	2mm-2in	B
H	8	0	$<2 \mathrm{~mm}$	B

SUBJECT: | Nevada Irrigation District - NID |
| :--- |
| $\frac{\text { Hemphill Diversion Project }}{\text { Roughened Channel - Large Boulder Analysis }}$ |

BY: J. Burgi CHK'D BY:
DATE: $3 / 4 / 2022$
PROJECT NO.: $21-125$

Purpose

The purpose of this calcualtion sheet is to calculate the factor of safety for the larger boulders

References

- USBR. (2007). Rock Ramp Design Guidelines. Denver: U.S. Department of Interior, Bureau of Reclamation

Information - Input

$\mathrm{Q}_{\text {MAX }}=$	5000	$\mathrm{ft}^{3} / \mathrm{s}$	Estimated bank full flow
$Q_{100 \mathrm{YR}}=$	15000	$\mathrm{ft}^{3} / \mathrm{s}$	From FEMA
Channel Width ${ }_{\text {MAX }}=$	83	ft	Bank full width
Channel Width ${ }_{100 \mathrm{YR}}=$	600	ft	Approximate floodplain width
$\mathrm{S}=$	0.028	$\mathrm{ft} / \mathrm{ft}$	Roughened Channel Slope
$\mathrm{q}_{\text {max }}=$	60.24	$\mathrm{ft}^{2} / \mathrm{s} / \mathrm{ft}$	
$\mathrm{q}_{100 \mathrm{YR}}=$	25.00	$\mathrm{ft}^{2} / \mathrm{s} / \mathrm{ft}$	
$\mathrm{D}_{50 \mathrm{maX}}=$	0.90	ft	
$\mathrm{D}_{84 \mathrm{mAX}}=$	2.25	ft	
$\mathrm{P}=$	85.2	ft	wetted perimeter
$\mathrm{A}=$	241.4	ft^{2}	Area
$\mathrm{R}=$	2.8	ft	Hydarulic Radius
W =	83.00	ft	Top Width
D =	2.91	ft	Hydraulic Depth

Calculation

$$
\begin{aligned}
& \mathrm{SF}=\frac{\mathrm{a}_{\theta} \cdot \tan (\phi)}{\eta_{1} \cdot \tan (\phi)+\sqrt{1-\mathrm{a}_{\theta}{ }^{2}} \cdot \cos (\beta)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equation 7-1 } \\
& \text { Where, } \\
& \text { SF = Safety factor; } \\
& \mathrm{D}_{\mathrm{s}}=\text { rock diameter; } \\
& \theta_{0}=\text { longitudinal bed slope; } \\
& \theta_{1}=\text { bank side slope; } \\
& \phi=\text { Angle of repose (} \simeq 42 \text { Degrees); } \\
& \lambda=\text { angle of vertical stream line deviation from horizontal, must be } \geq 0 \\
& \text { (outside of a bend); } \\
& \tau_{0}=\text { bed shear stress }=\gamma \cdot R \cdot S_{f} ; \\
& \gamma=\text { unit weight of water; } \\
& \mathrm{R}=\text { hydraulic radius; } \\
& \mathrm{S}_{\mathrm{f}}=\text { friction slope; } \\
& \theta=\text { down-slope angle including bed and bank slope; } \\
& \eta_{0}=\text { shear force acting on the rock; } \\
& \beta=\text { correction for side slope, bed slope, and secondary currents; } \\
& \eta_{1}=\text { correction for side slope, bed slope, and secondary currents; and } \\
& 1_{1,2,3,4}=\text { moment arms between riprap particles (canceled through lift and } \\
& \text { drag assumptions. } \\
& \mathrm{A}, \mathrm{~B}=\text { lever arm ratios. The ratio } \mathrm{A} / \mathrm{B} \text { is assumed to equal } 1 \text {. } \\
& \tau=\gamma * R * S
\end{aligned}
$$

Diameter of large rocks (ft)	$\mathrm{D}_{\mathrm{s}}=$	1	2	2.25	3	3.5	5.6
	$\tau=$	4.9	4.9	4.9	4.9	4.9	4.9
	$\eta_{\mathrm{o}}=$	0.868	0.434	0.386	0.289	0.248	0.155
Assuming parallel streamlines	$\lambda=$	0	0	0	0	0	0
Side slope	$\theta_{1}=$	0	0	0	0	0	0
	$\theta_{0}=$	1.60	1.60	1.60	1.60	1.60	1.60
Since the SIN of zero is zero	$\theta=$	90	90	90	90	90	90
	$\mathrm{a}_{\mathrm{q}}=$	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996
	$\beta=$	0	0	0	0	0	0
	$\eta_{1}=$	0.868	0.434	0.386	0.289	0.248	0.155
	SF =	1.1	2.1	2.4	3.1	3.6	5.4

Scour around large rocks - similar to pier scour

Conclusion

Based on the analysis above, Rock larger than the $D_{84-E S M}$ would be stable with a factor of safety of 2.4 on the roughened rock ramp. A minimum recommended factor of safety of 1.1 is reached with a rock diameter of 1.0 feet.

Assuming pier type scour around larger boulders, there is the potential of 1.4 ft scour. Since the overall thickness of the roughened ramp will be approximately 3.75 feet, the system is sufficiently armored.

The purpose of this calcualtion sheet is to calculate the manning's coefficient for the roughened channel at high flow.

References

- USBR. (2007). Rock Ramp Design Guidelines. Denver: U.S. Department of Interior, Bureau of Reclamation

Information - Input

$\mathrm{Q}_{\text {MAX }}=$	5000	$\mathrm{ft}^{3} / \mathrm{s}$	Estimated bank full flow
$\mathrm{Q}_{100 \mathrm{YR}}=$	15000	$\mathrm{ft}^{3} / \mathrm{s}$	From FEMA
Channel Width ${ }_{\text {MAX }}=$	83	ft	Bank full width
Channel Width $_{100 \mathrm{YR}}=$	600	ft	Approximate floodplain width
S =	0.028	$\mathrm{ft} / \mathrm{ft}$	Roughened Channel Slope
$\mathrm{q}_{\text {MAX }}=$	60.24	$\mathrm{ft}^{2} / \mathrm{s} / \mathrm{ft}$	
$\mathrm{q}_{100 \mathrm{YR}}=$	25.00	$\mathrm{ft}^{2} / \mathrm{s} / \mathrm{ft}$	
$\mathrm{D}_{50 \text { max }}=$	0.90	ft	
$\mathrm{D}_{84 \text { max }}=$	2.25	ft	
$\mathrm{P}=$	85.2		wetted perimeter
A $=$	241.4		Area
$\mathrm{R}=$	2.8		Hydarulic Radius
W =	83.00		Top Width
$\mathrm{D}=$	2.91		Hydraulic Depth

Calculation

Depth Independent Roughness for Mild Gradients

n	$=K_{u} * D_{x}{ }^{1 / 6}$	Equation 3-1 (BOR)
n	$=$ Channel Roughness	
K_{u}	$=$ dimensional coefficient	
D_{x}	$=$ representative grain diameter	

Author	$\mathrm{K}_{\mathrm{u}(\mathrm{m})}$	$\mathrm{K}_{\mathrm{u}(\mathrm{ft})}$	X for D_{x}	$\mathrm{Dx}(\mathrm{ft})$	$\mathrm{Dx}(\mathrm{m})$	n
Henderson (1966)	0.038		75	1.96	0.60	0.035
Lane and Carlson (1955)	0.0473	0.0388	75	1.96	0.60	0.043
Strickler (1923)	0.041		50	0.90	0.27	0.033
USACOE (1991)	0.046	0.038	90	3.33	1.01	0.046

Depth Based Roughness


```
n=\mp@subsup{R}{}{1/6}\cdot\sqrt{}{\frac{f}{8\cdotg}}
    R= 2.8
    n= 0.03
```

Steep Slope Roughness Estimation

$n=0.029 *\left(D_{50} * S_{o}\right)^{0.147}$	
$\mathrm{D}_{50}=$	0.90 Medium grain size
$\mathrm{S}_{\mathrm{o}}=$	0.028 Slope of ramp
$\mathrm{n}=$	0.0391

Conclusion

Of the analysis listed above for the estimation of the manning's coefficient for a roughened rock channel, the Army Corps of Engineergs appears to be the most conservative. It is recommended that a manning's n - coefficient of $\mathbf{0 . 0 4 5}$ be used in the hydraulic modeling of the roughened channel.

SUBJECT: Nevada Irrigation District - NID
Hemphill Diversion Project
Low Flow Channel
BY: J. Burgi CHK'D BY: M. Cerucci
DATE: 3/4/2022
PROJECT NO.: 21-125

Purpose
The purpose of this calculation sheet is to analyze the proposed low flow channel for the roughened channel.

References

-Lindeburg, Michael. (2003). Civil Engineering Reference Manual, California, Professional Publications, Inc. -Mefford, Brent. (2014). Pocket Guide to Screening Small Water Diversions, USFS, USFWS, USBOR

Information - Input
Auburn Ravine Design flows:
Q95 $\quad 13.3 \mathrm{cfs}$

Calculation

Calculate normal depth of flow in low flow channel at low flow

The low flow channel will be a triangular channel with side slopes of 2:1 and depth of 1 ft .

$$
Q=\left(\frac{1.49}{n}\right) A\left(R_{h}{ }^{\frac{2}{3}}\right) S^{\frac{1}{2}}
$$

Manning Coeff	n	0.045
hydraulic grade line	S	$0.028 \mathrm{ft} / \mathrm{ft}$
bottom width	btm	0 ft
sideslope right	zr	2
sideslope left	zl	2
depth	d	1 ft
Area	A	2.00 sqft
Wetted Perimeter	W	4.47 ft
Hydraulic Radius	R_{h}	0.45 ft
Velocity	V	3.23 fps
Flow	Q	6.46 cfs

Calculate normal depth of flow in trapazoidal medium flow channel

The medium flow channel will be a trapazoidal channel with $2: 1$ side slopes, a bottom width of 8 ft , and a depth of 0.75 feet.
$Q=\left(\frac{1.49}{n}\right) A\left(R_{h}{ }^{\frac{2}{3}}\right) S^{\frac{1}{2}}$

Manning Coeff	n	0.045
hydraulic grade line	S	$0.028 \mathrm{ft} / \mathrm{ft}$
bottom width	btm	8 ft
sideslope right	zr	2
sideslope left	zl	2
depth	d	0.75 ft
Area	A	7.13 sqft
Wetted Perimeter	W	11.35 ft
Hydraulic Radius	R_{h}	0.63 ft
Velocity	V	4.05 fps
Flow	Q	28.86 cfs

Conclusion

The low flow triangual channel will reach capacity at normal flow depth of 1 foot at a flow rate of 6.5 cfs . The trapazoidal medium flow channel will reach capacity at normal flow depth of 0.75 at a flow rate of 28.7 cfs . Adding the triangular flow to the trapazoidal channel flow results in a flow rate of 35.2 cfs.

SUBJECT: Nevada Irrigation District - NID
Hemphill Diversion Project
Transition Rock Sizing

BY: R. Hudson CHK'D BY: J. Burgi
DATE: $3 / 4 / 2022$
PROJECT NO.: 21-125

Purpose

The purpose of this calcualtion sheet is to calculate the Rock Sizing for the section of river downstream of the roughened channel.

References

- USBR. (2009). Hydraulic Design of Stilling Basin and Energy Dissipators Engineering Monograph No. 25. USBR.

Information - Input

$\mathrm{Q}_{\text {MAX }}=$	5000	$\mathrm{ft}^{3} / \mathrm{s}$	Estimated bank full flow
$\mathrm{Q}_{100 \mathrm{YR}}=$	15000	$\mathrm{ft}^{3} / \mathrm{s}$	From FEMA
$\mathrm{V}_{\mathrm{MAX}}=$	10.61	ft / s	From HEC-RAS model at location where rock channel ends
$\mathrm{V}_{100 \mathrm{YR}}=$	13.94	ft / s	From HEC-RAS model at location where rock channel ends

Calculation

Hydraulic modeling of the roughened channel and transition into the downstream natrual stream channel indicate that there will not be a hydraulic jump at the $100-\mathrm{yr}$ flow condition. Therefore the transition from the roughened channel to the natural stream will be protected using design criteria for the protection of stream channel downstream of a stilling basin where most of the energy has been removed from the flow, however flow is characterized by high velocity flow including surges and waves. The following chart has been developed by the USBR(2009) to guide the designer in sizing riprap downstream from stilling baisins.

SIZE OF RIPRAP TO BE USED DOWNSTREAM FROM STILLING BASINS

Figure 1. Minimum Riprap Sizing

Using Figure 1 above, the required stone size is as follows:

$d_{100 \text { YR }}$	$=$	27.8	in
$d_{\text {BANKFULL }}$	$=$	16.1	in
$W_{100 \text { YR }}$	$=$	1100	lbs
$W_{\text {BANKFULL }}=$	210	lbs	

Conclusion

Research conducted by USBR in the use of this chart established that a well-graded riprap layer containing about 40 percent of the rock pices smaller than the required size as shown above was as stable, or more stable than a single stone of the required size. The proposed streambed rock distribution shown in the Rock Gradation calculation for the roughened channel suggests a rock gradation that would meet the required stone size calaculated above.

SUBJECT: $\frac{\text { Nevada Irrigation District - NID }}{\text { Hemphill Diversion Project }}$
BY: J. Burgi
DATE: $3 / 14 / 2022$
Fish Screen Approach Velocity
Purpose
The purpose of this calcualtion sheet is to analize the approach velocity at the cone fish screen at varying depths of water and varying flow rates.

References

- ISI (2022) Data Sheet provided to McMillen Jacobs via e-mail on 2/23/2022

Information - Input

$Q_{\text {min }}$	3	$c f s$
$Q_{\text {design }}$	6	cfs
$Q_{\text {max }}$	18	cfs

Calculation

Water depth and approach velocity calculations in front of the fish screen throughout range of diversion flows

Based on flow data provided by manufacturer (ISI 2022):

The following table is made up of data from the figure above.

	Approach Vel.		
Depth	0.2	0.33	0.4
3	0.4	0.6	0.8
6	2.9	4.8	5.9
9	5.3	8.7	10.6
12	7.4	12.3	14.9
15	9.4	15.5	18.8
18	11.1	18.4	22.3
21	12.7	21	25.4
24	14.1	23.2	28.1
27	15.2	25.1	30.4
30	16.2	26.7	32.3
33	16.9	27.9	33.9
36	17.1	28.2	34.2

This data can be re-plotted for Approach Velocity vs. Flow Rate at differing depths of water at the screen.

The equation for the linear relationship between approach velocity and flow rate at varying depths of water are used to develop the following table and figure.

	Flow Rate (cfs)								
Depth	3	4	5	6	8	10	12	16	18
6	0.2076	0.2745	0.3414	0.4083	0.5421	0.6759	0.8097	1.0773	1.2111
9	0.1135	0.1513	0.1891	0.2269	0.3025	0.3781	0.4537	0.6049	0.6805
12	0.0824	0.1090	0.1356	0.1622	0.2154	0.2686	0.3218	0.4282	0.4814
18	0.0555	0.0734	0.0913	0.1092	0.1450	0.1808	0.2166	0.2882	0.3240
21	0.0471	0.0628	0.0785	0.0942	0.1256	0.1570	0.1884	0.2512	0.2826

Conclusion

For the minimum diversion of 3 cfs , approach velocities will be significantly below the CDFW criteria of 0.33 fps throughout the range of depths. For the normal diversion of 6 cfs , approch velocities will be below the CDFW criteria once the depth of water on the cone screen is above 7 inches (WSEL 197.08 ft). At the max flow rate of 18 cfs , approach velocities will be below the CDFW criteria when the depth of water at the cone screen is greater than 17 inches (WSEL 197.92 ft).

SUBJECT: Nevada Irrigation District - NID
Hemphill Diversion Project
BY: J. Burgi CHK'D BY: \qquad
Stream Flow vs. Depth Rating Curve
Purpose
The purpose of this calcualtion sheet is to develop a stream flow rating curve.

References

Information - Input

Based on 2-D HEC-RAS Model,

Flow (cfs) | WSEL (ft) | |
| ---: | ---: |
| 5 | 197.906 |
| 10 | 198.274 |
| 20 | 198.577 |
| 50 | 198.977 |
| 100 | 199.221 |
| 250 | 199.694 |
| 500 | 200.259 |
| 1000 | 201.108 |
| 2500 | 202.875 |
| 5000 | 204.716 |
| 7500 | 205.459 |
| 10000 | 206.103 |
| 15000 | 207.193 |

Calculation

Conclusion

Based on output from the current 2-D HEC-RAS model for the proposed roughend channel, the above rating curve estimates the water surface elevation at the Cone Screen Structure for flows in Auburn Ravine ranging from 10 cfs to 15,000 cfs.

