Staff Report

for the Engineering Committee Meeting of January 14, 2020

то:	Engineering Committee Members
FROM:	Doug Roderick, PE, Engineering Manager Tonia M. Tabucchi Herrera, PE, Senior Engineer
DATE:	January 8, 2020
SUBJECT:	E. George to Lake Wildwood Backbone Extension Pipeline Project (FATR #2255)

ENGINEERING

RECOMMENDATION:

Informational item to review the overall scope of the E. George to Lake Wildwood Backbone Extension Pipeline (BEP) Project with the Committee.

BACKGROUND:

The E. George to Lake Wildwood BEP Project (Project) was developed to interconnect the E. George and Lake Wildwood Treated Water Systems providing, as needed, a supplemental and emergency treated water supply to Lake Wildwood Treated Water System, provide treated water to adjoining and constructive conveyance parcels, provide operational flexibility, and to provide for a phased complete upgrade of the LWWTP when needed.

Through the course of the development of the Project, the District reviewed the Lake Wildwood Treatment Plant, service area and potential service area along the pipeline route. Staff will provide to the Committee an outline of the items leading to the development of the Project, as well as an overview of the Project and identified improvements required in both the E. George and Lake Wildwood Treated Water Systems. Staff will also present an overview of the segments for construction of the Project.

BUDGETARY IMPACT:

None. This is an informational item.

ATTACHMENTS: (4) Engineering Memorandum Exhibit map Spreadsheet of phases/costs LWWTP Capacity Study and Options Analysis Report

Memorandum

TO: Doug Roderick, PE, Engineering Manager

FROM: Tonia M. Tabucchi Herrera, PE, Senior Engineer

DATE: January 7, 2020

SUBJECT: E. George to Lake Wildwood Backbone Extension Project (FATR#2255) Project Review

_ ENGINEERING

The purpose of the E. George to Lake Wildwood Backbone Extension Project (Project) is to provide supplemental and emergency treated water to Lake Wildwood Treated Water System (LWWTWS), provide treated water to adjoining and constructive conveyance parcels, provide operational flexibility, and to provide for a phased complete upgrade of the LWWTP when needed.

Lake Wildwood Treatment Plant (LWWTP) is the sole source for the treated water supply for Lake Wildwood, and Penn Valley treated water service regions. LWWTP sole raw water supply is the Newtown Canal.

LWWTP is reaching both its age and permitted capacity of 4 million gallons per day (4 MGD). The pipeline construction will allow the District to continue to utilize the existing LWWTP while planning for its replacement when it becomes necessary. Further, the Project will bring treated water along the route and allow for future mainline extensions as the pipeline serves a dual function as both a transmission and distribution main.

This memo intends to provide an informational summary leading to the development of the Project and identify its current scope.

Staff contracted with HDR to conduct an options analysis that included expanding the LWWTP, improving the existing plant, or constructing an intertie with the E.George Treated Water System (EGTWS).

The analysis studied LWWTWS historical and potential future demands. Although the study found a decrease in demands due to drought conditions and state regulations for reduced water usage, the demand analysis concluded that the LWWTP would reach capacity in 10 years based on potential future demands.

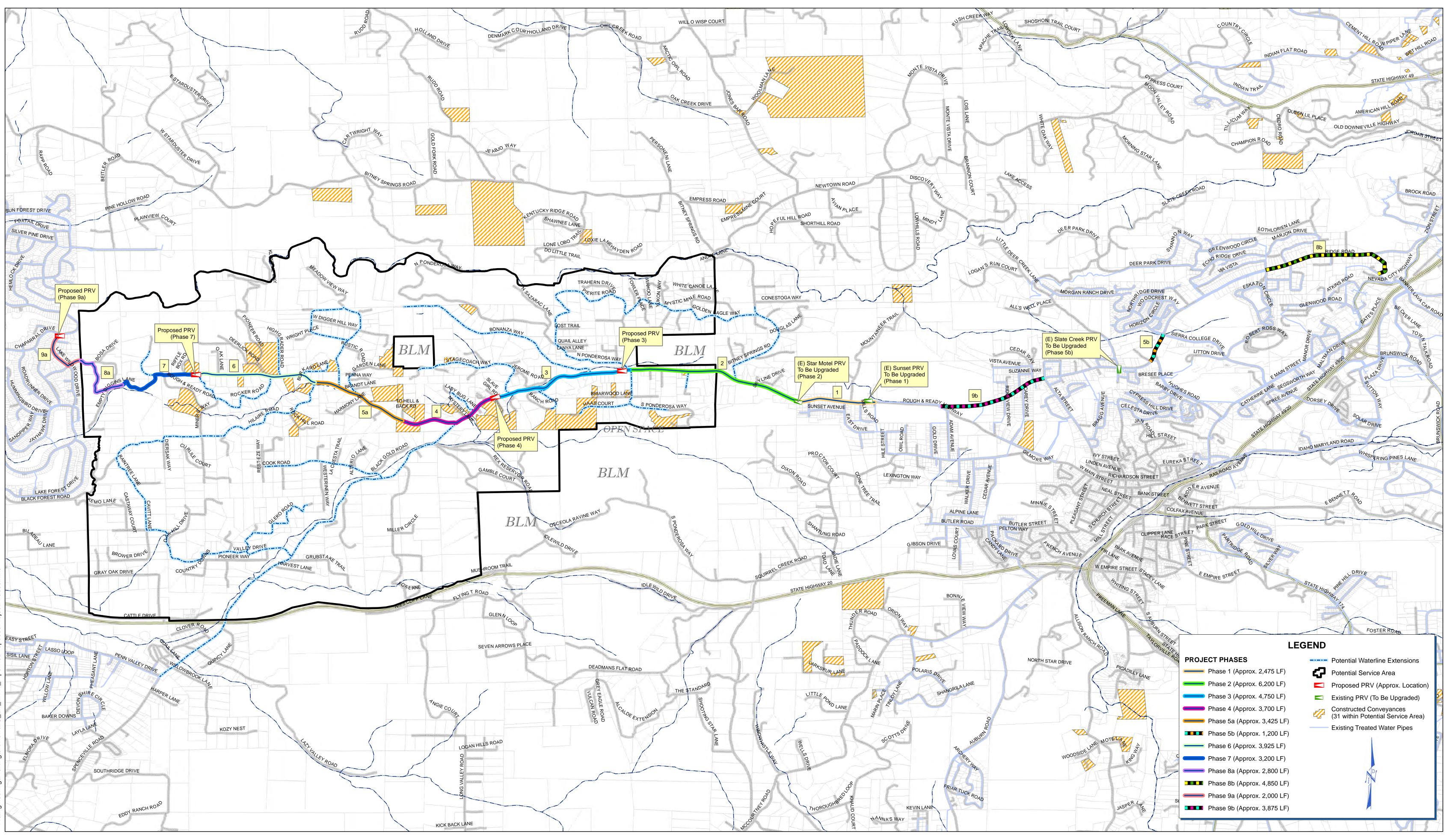
To provide a reliable treated water supply for a potential future demand of 5 MGD, the analysis considered all the supply coming from LWWTP would occur by an expansion of the existing plant, construction of a new treatment plant, or a combination LWWTP upgrades and construction of a new pipeline. The analysis reviewed a combination of options and concluded the two best options were the construction of a new modular treatment plant (5.5 MGD) or construction of a pipeline with modular water treatment plant upgrade phased as need with the increase of demand. Initial cost, refurbishment of existing equipment, operation cost, and plant footprint were considered in the analysis.

The pipeline route included in the analysis was a result of ranking four possible routes with regards to construction costs, design impacts/considerations, number of potential customers, and water quality. The preferred Project route had the highest potential customers, the highest number of constructive conveyance customers, and the lower of the potential water quality concerns. This proposed project meets most of the evaluation criteria established in the Backbone Extension Program (BEP).

The analysis considered a 20-year net present value (NPV) worth calculation for a LWWTP upgrade, a pipeline only construction, and a LWWTP upgrade with the pipeline option. The LWWTP upgrade with pipeline option was higher in the 20-year NPV; however, it was the recommended option due to the development of supplemental and emergency supply to LWWTWS, ability to provide treated water to adjoining and constructive conveyance parcels, ability to provide operational flexibility, and ability to provide for a phased complete upgrade of the LWWTP when needed. The results of the study were presented to the Engineering Committee in June 2017. Staff concurred with the recommendation and moved forward with a hydraulic and CEQA analysis for the Project.

The hydraulic analysis further defined the Project. The analysis provided approximate locations for pressure reducing valve stations (PRV), further evaluated pipeline sizes, and looked at the potential impacts to the existing EGTWS. As a result, existing PRVs and pipelines were identified for replacement and/or upgrade. Improvements are also required to the LWWTP. The following items were identified during the consultant analysis:

- Improvements to the canal turnout screen
- Addition of new drying beds to relieve the overloaded wash water ponds
- Potentially replacement of backwash pumps and blower that may fail prior to 2027


Due to the large capital costs associated with this project, phasing of the construction of the Project should be considered. The project was broken down into several logical phases to spread costs out over multiple budget years. See attached exhibit map with proposed phases and corresponding spreadsheet indicating if it is a replacement or new construction and the potential cost associated with the construction. It does not reflect the cost of the potential right of way acquisitions required.

To date, the hydraulic analysis has been finalized, Notice of Determination for Mitigated Negative Declaration has been filed, and easements for a portion of the pipeline through Lake Wildwood Homeowner's Association property have been acquired. A portion of the Project (phases 1, 2, 3a, and 3b) has been designed.

PHASING OF E. GEORGE TO LAKE WILDWOOD BEP

Phase	Description	Pipeline type	Goal	Estimated Cost	ROW required?	Comment 1
1	Ready Highway (to Star Motel replacement)	Parallel construction of 2475 If pipeline	Additional infrastructure and upgrade of Sunset PRV to meet short term need of pipeline MDD and FF. Long term required for flows to LWW.	\$ 1,324,799	yes PRV location	EE was completed as project designed. Mob/demob estimated at 5%. Savings can be seen with mob/demob if phasing combined. Perhaps shorten timeline slightly. Lots of tie-ins but not services. I would expect that the cost of microresurfacing would go down if we allow a couple phases to be done.
2	Star Motel Replacement 12390 Rough and Ready Hwy to Ponderosa (to new PRV) along Rough and Ready Highway	Parallel and new construction of 6183 If pipeline	Additional infrastructure and upgrade of Sunset PRV to meet short term need of pipeline MDD and FF. Long term required for flows to LWW.	\$ 2,931,107	yes PRV location	EE was completed as project designed. Mob/demob estimated at 5%. Savings can be seen with mob/demob if phasing combined. Perhaps shorten timeline slightly. Lots of tie-ins but not services. I would expect that the cost of microresurfacing would go down if we allow a couple phases to be done.
3	Ponderosa PRV to Slave Girl Road (new PRV) along Rough and Ready Highway	New construction of 4748 lf pipeline	New construction, including PRV at Ponderosa	\$ 2,378,485	yes PRV location	EE was completed as project designed. Mob/demob estimated at 5%. Savings can be seen with mob/demob if phasing combined. Perhaps shorten timeline slightly. Lots of tie-ins but not services. I would expect that the cost of microresurfacing would go down if we allow a couple phases to be done.
	Slave Girl PRV to Hell and Back Lane along Rough and Ready Highway then Rough and Ready Road	New construction of 3692 If pipeline	New construction, including PRV at Slave Girl, portion of leg to Penn Valley.	\$ 2,027,676	yes PRV location	EE was completed as project designed. Mob/demob estimated at 5%. Savings can be seen with mob/demob if phasing combined. Perhaps shorten timeline slightly. Lots of tie-ins but not services. I would expect that the cost of microresurfacing would go down if we allow a couple phases to be done. Conduits and pull boxes not included in estimate. Rough and Ready Road is a narrow facility. There is a potential for requiring temporary easements for construction.
5a	Hell and Back Lane to Hilaire Road along Rough and Ready Road	New construction of 3418 lf pipeline	New construction	\$ 1,566,014	not anticipated	Rough and Ready Road is a narrow facility. There is potential for requiring temporary easements for construction.
5b	Sierra College Dr to Deeken Crt and Slate Creek PRV along Ridge Road	Replacement construction of 1210 If pipeline	Existing system is 10". The pipeline replacement was previously identified as required for master plan flows.	\$ 654,000	yes PRV location	The area is developed and impacted with other utilities. ROW maybe required for the pipeline but the goal is to stay within the public row. The replacement PRV will require ROW.
6	Hilaire Road to Riffle Box Road (new PRV) along Rough and Ready Road	New construction 3914 If pipeline	New construction	\$ 1,565,600		Rough and Ready Road is a narrow facility. There is potential for requiring temporary easements for construction.
7	Riffle Box Road PRV to LWW HOA property near I	New construction 3205 lf of pipeline	New construction, including PRV at Riffle Box	\$ 1,282,000	Yes all private	This area require easement acquisition along property lines and private roads. Tree removal will be required. Private roads are dirt and will require at minimum bump outs during construction.
8a	Property line from LWW HOA owned parcel, along Empty Diggins and the existing unnamed dirt road to Minnow Way	New Construction 2800 lf of pipeline	New construction	\$ 1,120,000	No - Row acquired	Empty Diggins is a private dirt road. The unnamed dirt road is on LWW HOA.
8b	Via Vista to Durbrow Rd along Ridge Road	replacement construction of 4850 If pipeline	Existing system is 12". The pipeline replacement is required to meet project needs.	\$ 2,182,500	not anticipated	The area is developed and impacted with other utilities. ROW maybe required for the pipeline but the goal is to stay within the public row.
9a	Along Minnow Way and Lake Wildwood to Charparral Drive and new PRV	Parallel construction of 2000 If	Parallel new construction	\$ 800,000	yes PRV location	The area is developed and impacted with other utilities. ROW maybe required for the pipeline but the goal is to stay within the public row. The new PRV will require ROW.
9b	Alta Street to Rough & Ready Highway along Ridge Road	Parallel construction of 3870 lf	Parallel new construction	\$ 1,548,000	not anticipated	The area is developed and impacted with other utilities. ROW maybe required for the pipeline but the goal is to stay within the public row. Further, the timing may require adjustment as the County has a potential traffic circle Project at Adams Ave/Ridge Road/Rough and Ready Highway.

	Comment 2
-	Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Spring intersection and keep it all parallel construction only. Shorter run 34+75 to 58+97 2422ft.Conduits and boxes for future comms were not included in estimate; however should be explored
	Design is completed much further and site for PRV near Slave Girl Road not determined. Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Site for PRV is approximate. No property owners have been contacted. End of pipe has a location for WQ flushing device. Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Thought was to have 5a and 5b in same budget year.
	Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Thought was to have 8a and 8b in same budget year.
	Conduits and boxes for future comms were not included in estimate; however should be explored further.
	Thought was to have 9a and 9b in the same budget year. Conduits and boxes for future comms were not included in estimate; however should be explored further.

NEVADA IRRIGATION DISTRICT

NEVADA COUNTY -- PLACER COUNTY GRASS VALLEY, CALIFORNIA

E. GEORGE - LAKE WILDWOOD BEP - PROJECT PHASES

Drawn By: D. HUNT

Date: <u>1/7/2020</u>

Scale: <u>1" = 1/3 mile @ 24x36</u>

Sheet: <u>1</u> of <u>1</u>

FJS

Lake Wildwood Water Treatment Plant Capacity Study and Options Analysis Report Final

Nevada Irrigation District

Grass Valley, CA

Lake Wildwood WTP Options Analysis and Master Plan Project

July 20, 2017

This page is intentionally left blank.

Table of Contents

ES-	1 Exec	utive Summary	ES-1
E	S-1.1	Demand Analysis	ES-1
E	S-1.2	Project Need and Key Criteria	ES-2
E	S-1.3	Elizabeth George Intertie Pipeline	ES-3
	ES-1.3.7	I In-Conduit Hydroelectric	ES-5
	ES-1.3.2	2 Service Connections	ES-5
	ES-1.3.3	3 System Modeling	ES-5
E	S-1.4	Alignment Evaluation Criteria	ES-6
E	S-1.5	Evaluation Results	ES-6
E	S-1.6	Water Treatment Plant Upgrades	ES-8
	ES-1.6.7	Background	ES-8
E	S-1.7	Source Water Quality	ES-8
E	S-1.8	WTP Preliminary Capacity Analysis	ES-8
E	S-1.9	WTP Alternatives	ES-9
E	S-1.10	Evaluation Results	ES-10
E	S-1.11	Comparison of Pipeline and Water Treatment Plant Alternatives	ES-11
	ES-1.11	.1 Summary of Alternatives Compared	ES-11
E	S-1.12	Evaluation of Combined Alternatives	ES-11
	ES-1.12	.1 Preliminary Cost Estimate	ES-11
	ES-1.12	.2 Advantages and Disadvantages	ES-12
E	S-1.13	Recommendation	ES-13
1	Introd	luction	1
2	Dema	and Analysis Summary	1
3	Proje	ct Need and Key Criteria	2
4	Elizal	beth George Intertie Pipeline	3
4.	1	Background	3
	4.1.1	Proposed Alignment Alternatives	5
	4.1.2	Pipeline Flow	6
	4.1.3	In-Conduit Hydroelectric	11
	4.1.4	Bridge Crossings	12
	4.1.5	Access into Lake Wildwood	13
	4.1.6	Service Connections	14
	4.1.7	System Modeling	14
4.	2	Alignment Evaluation Criteria	20
	4.2.1	Construction Cost (20%)	20

FJS

	4.2.2	Design Impacts/Considerations (15%)	21
	4.2.3	Operations & Maintenance (10%)	22
	4.2.4	Customer Availability (30%)	22
	4.2.5	Water Quality (25%)	22
	4.3	Evaluation Results	22
5	Wate	r Treatment Plant Upgrades	24
	5.1	Background	24
	5.2	Source Water Quality	24
	5.3	Regulations and Treatment Goals	25
	5.4	WTP Preliminary Capacity Analysis	26
	5.5	WTP Alternatives	28
	5.5.1	Alternative 1: Future water supply from LWW WTP only	34
	5.5.2	Alternative 2: Future water supply from Combination of LWW WTP and Intertie Pipeline	36
	5.6	Evaluation of WTP Alternatives	36
	5.6.1	Preliminary Cost Estimates	37
	5.6.2	Preliminary O&M Estimates	38
	5.7	Evaluation Results	38
6	Comp	parison of Pipeline and Water Treatment Plant Alternatives	39
	6.1	Summary of Alternatives Compared	39
	6.2	Evaluation of Combined Alternatives	40
	6.2.1	Preliminary Cost Estimate	40
	6.2.2	Advantages and Disadvantages	41
	6.3	Recommendations	42
	6.3.1	Phasing	42

- Appendix A-1: Future Demand Analysis TM
- Appendix A-2: Demand Analysis Data and Calculations
- Appendix B-1: Alternative Alignment Construction Costs
- Appendix B-2: Hydroelectric Unit Cost Estimates
- Appendix B-3: WTP Alternative Cost Estimates
- Appendix B-4: WTP O&M Cost Estimates
- Appendix C: Required System Improvements from Modeling
- Appendix D: Constructed Conveyance Map
- Appendix E: Solids Generation Calculation

List of Tables

Table ES-1: Summary of Future Demands	ES-2
Table ES-2: Future Demand Timeframe to Exceed LWW WTP Capacity	ES-2
Table ES-3: Number of Construction Conveyances for Each Alignment	ES-5
Table ES-4: Alignment Analysis Criteria Weighting	ES-6
Table ES-5: Alignment Analysis Results	ES-7
Table ES-6: WTP Alternatives Advantages and Disadvantages	ES-9
Table ES-7: Pipeline and Water Treatment Plant Alternative SummaryES	S-11
Table ES-8: Preliminary Cost Estimates and 20 Year NPVES	S-12
Table ES-9: Advantages and Disadvantages of WTP Upgrade Only and WTP Upgrade with Intertie Pipeline	
Table 2-1: Summary of Future Demands	2
Table 2-3: Future Demand Timeframe to Exceed LWW WTP Capacity	2
Table 4-1: Water Demand Supplied by Pipeline during the Year	6
Table 4-2: Hydroelectric Economic Evaluation Assumptions	12
Table 4-3: Alignment 1 Hydroelectric Benefit and Cost for Option 1 and Option 2	12
Table 4-4: Required System Improvements for Each Alignment	15
Table 4-5: Alignment Analysis Criteria Weighting	20
Table 4-6: Constructability Factors and Additives	20
Table 4-7: Alignment Comparative Costs and Ranking	21
Table 4-8: Capital Cost and Benefit/Cost Ratio Estimates for Micro-Hydro Power Generation	ı21
Table 4-9: Number of Construction Conveyances and Service Connections for Each Alignment	22
Table 4-10: Alternative Alignment Water Quality Rankings	22
Table 4-11: Alignment Analysis Results	23
Table 5-1: Kay Water Quality, Flow and Residuals Generation Parameters (2011-2015)	25
Table 5-2: Existing WTP Unit Process Ratings and Limitations	26
Table 5-3: WTP Alternative Analysis Design Criteria	29
Table 5-4: WTP Alternatives Advantages and Disadvantages	36
Table 5-5: Summary of Estimated Design and Construction Costs for Each Alternative	38
Table 5-6: Preliminary O&M Costs for Each Alternative	38
Table 6-1: Pipeline and Water Treatment Plant Alternative Summary	40
Table 6-2: Preliminary Cost Estimates and 20 Year NPV	41
Table 6-3: Advantages and Disadvantages of WTP Upgrade Only and WTP Upgrade with Intertie Pipeline	41

List of Figures

Figure ES-1: Proposed Alignment Alternative Routes	ES-4
Figure 4-1: Proposed Alignment Alternative Routes	4
Figure 4-2: Approximate Alignment 1 Profile and Pressure Reducing Locations	7
Figure 4-3: Approximate Alignment 2 Profile and Pressure Reducing Locations	8
Figure 4-4: Approximate Alignment 3 Profile and Pressure Reducing Locations	9
Figure 4-5: Approximate Alignment 4 Profile and Pressure Reducing Locations	10
Figure 4-6: Bridge Crossing for Alignment 1 on Bitney Springs Road	13
Figure 4-7: Bridge Crossing on Rough and Ready Highway (Left), and Bridge Crossing on	
Cook Road (Right)	13
Figure 4-8: Existing LWW System Average Water Age (ADD)	16
Figure 4-9: Pipeline Supply Only - LWW System Water Age (ADD)	17
Figure 4-10: Pipeline Supply Only with Connection to Penn Valley - Water Age (ADD)	19
Figure 5-1: Alternative 1-A Upgrade and Expand Existing Treatment System	30
Figure 5-2: Alternative 1-B Modular Treatment Plant	31
Figure 5-3: Alternative 2-A Pipeline Supply and Upgrade Existing Treatment System	32
Figure 5-4: Alternative 2-B Pipeline Supply and New Modular WTP	33
Figure 5-5: Coanda Screen (Left) and an Automatic Self Cleaning Strainer (Right)	34
Figure 5-6: Trojan UV Swift Medium Pressure UV Reactor	35
Figure 5-7: Trident Modular Treatment System	35

ES-1 Executive Summary

The Nevada Irrigation District (NID) has retained HDR to complete a study of the drinking water supply system for the Lake Wildwood (LWW) water system and meet expected future demands for water. Lake Wildwood is currently served by an existing water treatment plant (WTP) that is the sole supply of drinking water to the community. The WTP while close to 40 years old, has historically met the water demands in the system; however, during peak demand periods the plant has been required to operate close to the maximum capacity, leaving little spare capacity for any future system growth or operational redundancy.

This analysis examines the potential future water needs in the Lake Wildwood system and alternatives to increase the water supply capacity, reliability; and create redundancy. Alternatives to upgrade the WTP were analyzed and compared with alternatives to extend a pipeline from the existing E. George WTP to provide a second source of treated water supply to LWW. This would increase supply because the limited raw water storage in LWW is not capable of supplying the WTP for a considerable length of time. In comparison, the Elizabeth George Water Treatment Plant (E. George WTP) source has raw water system redundancy as the raw water supply can be routed through one or two separate canals with some raw water storage available.

ES-1.1 Demand Analysis

In October 2016 HDR performed a capacity study for the Lake Wildwood Water Treatment Plant (Appendix A). From 2006 to 2014 the historic average day demand (ADD) and maximum day demand (MDD) were 1.19 and 2.97 MGD respectively. Four scenarios of future demand were analyzed; however, it should be noted that due to recent drought conditions, the demand since 2004 has not increased (0% growth). Therefore, projecting historic growth into the future results in no increase in demand. Descriptions of these scenarios and the future ADD and MDD associated with each are shown in Table ES-1.

Table ES-1: Summary of Future Demands

Description		2017	2027	2037
Scenario 1: Historic Population will continue to grow at the same rate as observed between 2006 and 2014, 0%.	ADD (MGD) MDD (MGD)	1.19 2.97	1.19 2.97	1.19 2.97
Scenario 2: Low Demand Population will grow at the estimated low average annual rate.1.	ADD (MGD) MDD (MGD)	1.20 3.00	1.37 3.42	1.56 3.89
Scenario 3: High Demand Population will grow at the estimated high average annual rate.1	ADD (MGD) MDD (MGD)	1.21 3.04	1.54 3.85	1.95 4.88
Scenario 4: Full Build-out Implementation of all proposed developments in the LWW service area within the next 20 years.	ADD (MGD) MDD (MGD)	1.21 3.02	1.44 3.59	1.66 4.16

¹Low and high estimated annual growth rates based on the 2015 NID Urban Water Management Plan (2016)

Assuming a net capacity of the existing LWW WTP of 3.6 MGD (4.0 MGD total capacity), Table ES-2 summarizes the year that the MDD for each scenario would exceed the current capacity.

Scenario	Year MDD Exceeds LWW WTP Capacity
Scenario 1: Historic	Not Exceeded by 2037
Scenario 2: Low	2031
Scenario 3: High	2024
Scenario 4: Build-Out	2027

Table ES-2: Future Demand Timeframe to Exceed LWW WTP Capacity

ES-1.2 Project Need and Key Criteria

As determined from the demand analysis, the existing LWW WTP is expected to reach the maximum capacity within the next 10 years. Typically supply facilities are operated with some spare capacity to account for maintenance and equipment failure, so the realistic timeframe for an increase in water supply is likely less than 10 years. A planning level decision to select the best alternative is needed now to provide sufficient time to fund, plan, design, and construct the improvements, which takes years to complete.

Water supply reliability is a key concern of the District and efforts have been made throughout NID's water system to intertie supply facilities, which greatly increases supply reliability and operational flexibility. These both provide a higher level of service to the District's customers.

This is one of the main considerations for including E. George WTP intertie pipeline alternatives in the study. The pipeline would provide a second source of supply which could be used to provide drinking water and fire supply in the event of a WTP failure or raw water source interruption. Likewise, the WTP would continue to provide a supply to customers in the existing LWW development in the event the pipeline is taken out of service. However, customers along the new pipeline alignment outside the LWW development would be dependent on the pipeline only for supply because the WTP cannot supply the higher elevations along the pipeline alignment.

A new pipeline would also provide another benefit, connection of customers to the public water system who are not currently connected. Because the pipeline would be routed through the District's existing service area, properties along the alignment could be connected to the water system, increasing water supply reliability (and potentially quality) to those new customers.

ES-1.3 Elizabeth George Intertie Pipeline

Four preliminary alignment alternatives were presented to HDR by NID in the initial stages of the project. These alignments run from the corner of Rough and Ready Highway and Bitney Springs Road to connect to LWW at various locations within the system. HDR has refined these alignments through looking closely at parcel maps, property lines, existing road routes, and site visits, so that the alignments described below represent four optimal options to join LWW to the E. Elizabeth George WTP. All four alignments are shown in Figure ES-1.

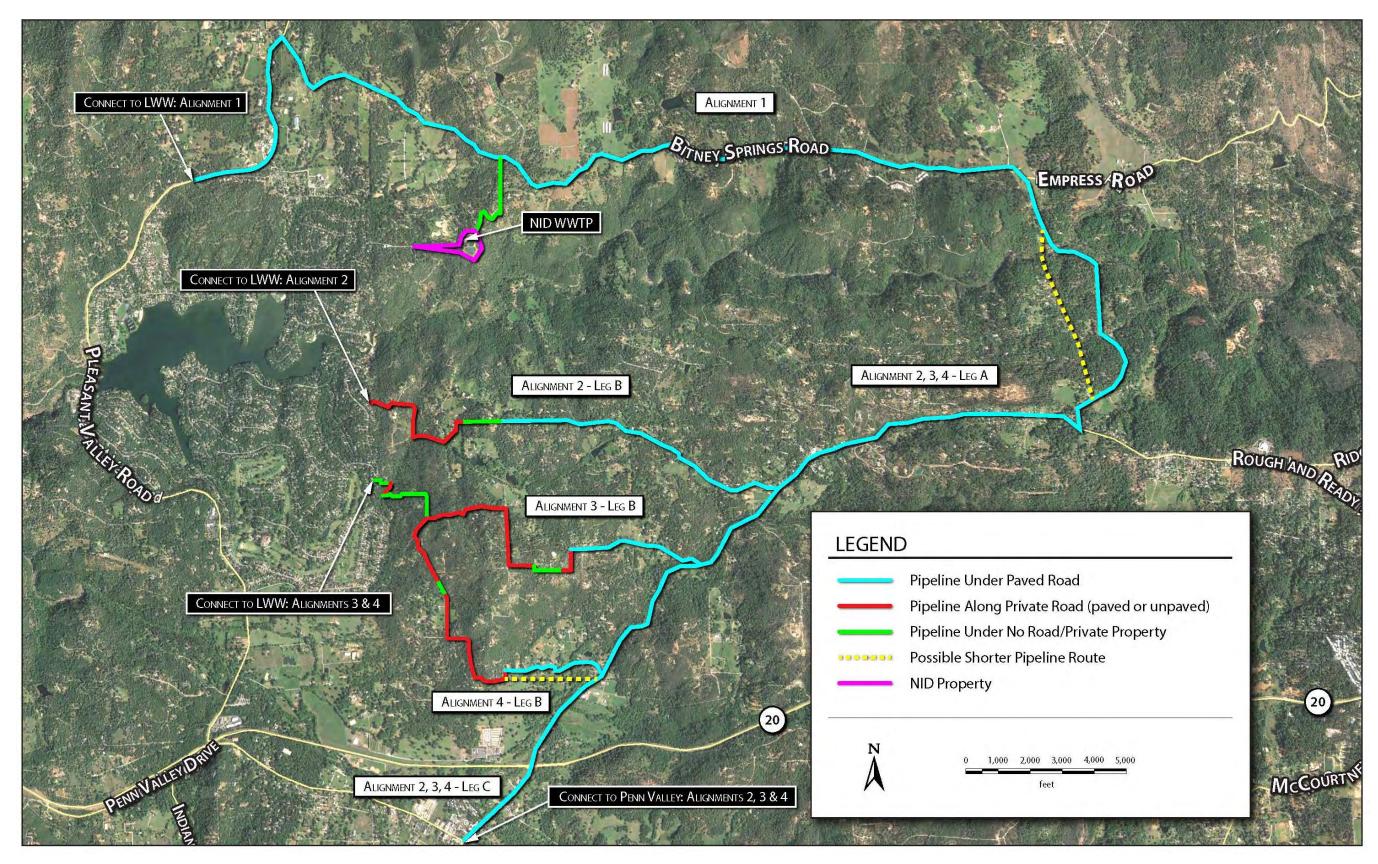


Figure ES-1: Proposed Alignment Alternative Routes

FX

ES-1.3.1 In-Conduit Hydroelectric

HDR performed a reconnaissance level investigation of the hydropower potential of the various pipeline alternatives being evaluated. It is assumed that any new hydropower generation would be located at the same location and in parallel with any required pressure reducing valves (PRV).

A cost analysis was completed for a 20+ year life cycle. Each pipeline alignment was analyzed for energy production based on the available pressure head. While the alignments varied somewhat, in general approximately one-half to two-thirds of the cost for hydropower facilities can be recovered in 20 years.

ES-1.3.2 Service Connections

Along each alignment alternative there are opportunities for new services at parcels which are currently classified as construction conveyances, and other developed or undeveloped parcels. Construction conveyances are possible service connections to existing in home raw water users that have an alternative approved potable water source such as bottled water. These users could benefit from connection to the public water system by improving health and safety.

The total number of service connections along the pipeline route is estimated to range from 108-162. This estimate includes parcels that have frontage along the pipeline. No variance parcels were analyzed as part of this report. There are also 41-50 estimated possible future service connections based upon frontage along the pipeline routes that is yet to be developed. The total number of construction conveyances and service connections are reflected in Table ES-3.

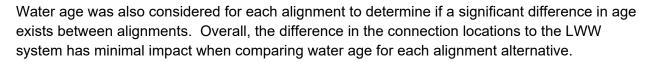

Alignment	# Constructed	Total # Service	<u>Connections</u>
	Conveyances	Developed	Undeveloped
1	3	108	41
2	19	162	50
3	5	150	49
4	5	150	46

Table ES-3: Number of Construction Conveyances for Each Alignment

ES-1.3.3 System Modeling

Models of the LWW and E. George systems were provided by NID for this analysis. The updated LWW model and E. George model were combined with the new pipeline alignments for the purpose of determining impacts resulting from supplying LWW through the pipeline, and determining improvements needed to mitigate the impacts.

The pressures in each zone were maintained at the current level, and the new pipeline supply pressure was reduced to match those currently observed in each zone where the connection is located. Therefore, no significant differences in system pressure or operation were required to provide supply via the new pipeline.

The water age in the existing system was modeled, along with water age for the system including supply from the E. George pipeline. The water age between the two supply scenarios does not vary significantly and there is actually some reduction in age with the pipeline due to the more central supply point in the distribution system.

ES-1.4 Alignment Evaluation Criteria

The analysis criteria below were selected and given percentages based on level of importance by NID staff. These criteria are shown in Table ES-4.

Criteria	Weight
Construction Cost	20%
Design Impacts/Considerations	15%
Operations & Maintenance	10%
Customer Availability	30%
Water Quality	25%

Table ES-4: Alignment Analysis Criteria Weighting

For each criterion, there were sub-criteria that were used for the final analysis. The ranking system used scores from 1 to 4 with 1 being the most favorable and 4 the least favorable. The other two scores were interpolated between 1 and 4 based upon comparison to the alignments that received the 1 or 4.

ES-1.5 Evaluation Results

The results of the alignment analysis can be seen in Table ES-5. Alignment 2 received the lowest ranking total, making it the most favorable alternative, with Alignment 1 receiving the second best ranking total.

2	ž
Nevada Irrigation District Lake Wildwood Options Analysis Report	Executive Summary

				2		Aligi		Allg	Alignment 4
	(0/)	Rank2	Weighted	Rank2	Weighted	Rank2	Weighted	Rank2	Weighted
Construction Cost ¹	20%	4.0	0.8	1.0	0.2	1.9	0.4	1.8	0.4
	1	46,530 large b	46,530 ft. total length, large bridge crossing	40,690 ft 1 bridg€	40,690 ft. total length, 1 bridge crossings	39,680 ft. 2 bridge	39,680 ft. total length, 2 bridge crossings	39,420 ft. bridg∈	39,420 ft. total length, 1 bridge crossing
Design Impacts/	15%	1.9	0.3	1.0	0.2	4.0	0.6	3.8	0.6
Considerations	1	Larg construc CF ³ , sı purchas∈ B/C ra	Largest length of construction with lowest CF ³ , small easement purchase, and the lowest B/C ratio for a hydro facilitv.	Second I: of pipe smalles purchase, ratio for a	Second largest length of pipe, second smallest easement purchase, highest B/C ³ ratio for a hydro facility.	Second s length, se easemer and high for a hy	Second shortest pipe length, second largest easement purchase, and highest B/C ratio for a hydro facility.	Shortest largest purchase ratio for a	Shortest pipe length, largest easement purchase, highest B/C ratio for a hydro facility.
Operations &	10%	1.0	0.1	2.3	0.2	3.4	0.3	4.0	0.4
Maintenance	1	Lowe required	Lowest number of required ARVs/BOs ³ and	Secon number o	Second smallest number of ARVs/BOs ³	Largest ARVs/BOs	Largest number of ARVs/BOs ³ and largest	Largest ARVs/BC	Largest number of ARVs/BOs ³ and some
		easi pip	easiest access to pipeline route	and som makin somewh	and some easements making access somewhat difficult.	easemei making ac	easement purchase making access difficult.	easeme access dit	easements making access somewhat difficult.
Customer	30%	4.0	1.2	1.0	0.3	2.6	0.8	2.7	0.8
Availability		Lowe; convey; Valley	Lowest constructed conveyances, no Penn Vallev connection.	Large cons convevan	Large number of constructive convevances, hidhest	Small r cons convevano	Small number of constructive convevances and lower	Small cons consevan	Small number of constructive convevances and least
		bos ex	possible other extensions.	density	density population.	density	density population.	dense	dense population.
Water Quality	25%	4.0	0.5	1.0	0.3	3.5	0.9	3.0	1.0
		Longes maxim	Longest pipe length = maximum water age,	Shortest minimum	Shortest pipe length = minimum water age,	Longer pip more imp	Longer pipe length with more improvements	Second	Second longest pipe length, most
		Poor w Pe	Poor water quality to Penn Valley	connects of the	connects to the middle of the system	needed te sy	needed to connect to system	improvem connect t	improvement needed to connect to the system
Total	100%		3.4		1.1		3.0		2.9

Table ES-5: Alignment Analysis Results

Notes:

Length will be the primary driver of construction cost, and bridge crossings. Cost at \$15/in-dia/ft.;
 Length will be the primary driver of construction cost, and bridge crossings. Cost at \$15/in-dia/ft.;
 Relative ranking of alternatives will assign a 1 for the best alternative, and 4 for the worst alternative. Quantifiable rankings are interpolated between best score (1) and worst score (4).
 CF = constructability factor; B/C = benefit/cost (20 year net present value); ARV = air release valve; BO = Blowoff valve.

ES-1.6 Water Treatment Plant Upgrades

ES-1.6.1 Background

The Lake Wildwood WTP has a permitted treatment capacity of 4 mgd. The Lake Wildwood WTP was built in stages. The first stage was completed in 1972 and a second stage was completed in in 1986. The existing plant includes the following components:

- NID canal turnout and raw water pipeline to plant site
- Raw water reservoirs
- Upflow sludge blanket steel clarifiers
- Dual media circular steel filters
- Washwater ponds
- Clearwell
- Filter backwash pumps and air scour blower
- Chemical storage and feed facilities for: alum, polymer, lime, and sodium hypochlorite
- Control Building

The existing plant has generally operated well, however repairs and upgrades will be needed for continued successful operation into future years.

ES-1.7 Source Water Quality

The source water used by Lake Wildwood WTP originates in Deer Creek and flows through the Scott's Flat and Lower Scott's Flat Reservoirs, then through the Newtown Canal to the Lake Wildwood Water Treatment Plant (WTP). Raw water diverted from the Newtown canal is conveyed through a pipeline to the raw water ponds at the WTP site, located one half mile west of Lake Wildwood. The raw water is generally of good quality with turbidity that varies from 2 to 15 NTU with occasional turbidity spikes of 30 to 50 NTU that last for 3 or 4 days during the rainy season. The Ph of the water ranges from 7.1 to 8.1 with average of about 7.6. Total organic carbon (TOC) is typically less than 2 mg/L with disinfection byproduct formation potential that meets state and EPA requirements. Because Cryptosporidium has been detected in the raw water supply, the plant has been classified as Bin 2 under the LT2ESWTR.

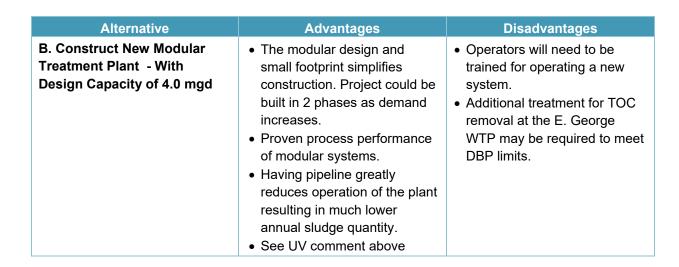
ES-1.8 WTP Preliminary Capacity Analysis

A maximum day plant capacity of 3.9-4.9 mgd is expected by the end of the 20-year planning period. The existing WTP has a permitted treatment capacity of 4.0 mgd with net capacity of 3.6 mgd after allowing for up to 10 percent for recycle streams.

Based on the capacity and the projected increase in demands, the existing WTP can meet system demands until approximately 2027 provided the following interim improvements are made:

- Improvements to the canal turnout screen
- Addition of new drying beds to relieve the overloaded wash water ponds
- Potentially replacement of backwash pumps and blower that may fail prior to 2027

ES-1.9 WTP Alternatives


Providing a reliable water supply for the Lake Wildwood service area can be accomplished by several different approaches that either retain the existing treatment plant or involve construction of new treatment units. The water supply to the Lake Wildwood service area could be entirely from the Newtown canal or a portion of the supply could be provided as treated water by a new pipeline from the E. George WTP.

For the treatment plant only scenario, the capacity of each alternative is up to 5.0 mgd net capacity to meet the high range of projected future demand. For the options that include water supply from a new pipeline from the E. George WTP, the treatment plant upgrades could be sized for 2.0-2.5 mgd and provide redundancy.

An alternatives evaluation was conducted for each alternative including advantages and disadvantages. A summary of the alternatives is presented in Table ES-6.

Alternative	Advantages	Disadvantages
1. Future Water Supply from LWV	WWTP only (5.5 MGD)	
A. Upgrade and Expand Existing Treatment System	 Minimize disruption to the plant site. Flocculation and plate settlers provide better performance than existing clarifiers. UV disinfection will provide greater flexibility in filter operation and reduce the required chlorine dose and DBP formation 	 Depth of the filters and media not ideal requiring a lower design filtration rate. Two new filters are required to increase the plant capacity to 5.5 MGD. Risk that refurbishing of old equipment may be more costly than currently estimated.
B. Construct New Modular Treatment Plant	 Small foot print Treatment equipment would be covered by canopy Proven process performance See UV comment above. 	 Operators will need to be trained for operating a new system.
2. Water supply from combination	of LWW WTP (4.0 MGD total) and	new pipeline (2.0-2.5 MGD)
A. Upgrade Existing Treatment System	 Having pipeline allows for the plant to shut down during the winter and run at lower capacity during the summer. Having pipeline greatly reduces operation of the plant resulting in much lower annual sludge quantity. Refurbishing the existing Plant 2 clarifier and all the filters reduces impacts and the need for re-training. See UV comment above 	 Depth of the filters not ideal reducing available head for operation. Risk that refurbishing of old equipment may be more costly than currently estimated. Additional treatment for TOC removal at the E. George WTP may be required to meet DBP limits.

Table ES-6: WTP Alternatives Advantages and Disadvantages

ES-1.10 Evaluation Results

A new coanda screen is recommended at the canal turnout to reduce maintenance and prevent possible overtopping of the canal.

For the WTP supply only options, Alternative 1-A, Upgrade and Expand Existing Treatment System has the lowest initial cost, but relies on continued use of the existing filters that would be refurbished plus two new similar filters. Alternative 1-B is 11 percent higher in cost, but includes all new modular treatment units including deeper bed filters. Given the advantages of new treatment equipment, Alternative 1-B is recommended for the treatment plant only scenario.

For the WTP and Pipeline Supply options, Alternative 2-A, Upgrade Existing Treatment System with New Pipeline has the lowest estimated construction cost for the WTP options, but relies on continued use of the existing filters that would be refurbished. Alternative 2-B is 15 percent higher in cost, but includes all new modular treatment units including deeper bed filters. Given the advantages of new treatment equipment, Alternative 2-B is recommended for the combined smaller treatment plant and pipeline scenario.

Using O&M costs from 2015 provided by NID, the cost of treated water was determined for the E. George WTP to be \$0.70 per 1,000 gallons and \$0.94 per 1,000 gallons treated at LWW. It is not anticipated that upgrades to the LWW WTP will significantly affect this unit cost.

The difference in treated water costs results in a reduction in O&M when LWW is partially supplied by E. George. The difference in net present value of the O&M costs over 20 years between Alternatives 1 (LWW only) and Alternative 2 (LWW + E. George) is \$1.24M, with Alternative 2 being less due to this reduction in O&M.

FJS

ES-1.11.1 Summary of Alternatives Compared

Two options were considered: upgrading the treatment plant to support the full future capacity and upgrade the treatment plant to operate in conjunction with the intertie pipeline. The details of these two options are summarized in Table ES-7.

WTP Upgrade Only	Pipeline & WTP Upgrade
Alternative 1-B	Alternative 2-B, Alignment 2
 Install new self-cleaning raw water screen either at WTP site or at canal. Install floating decanters in Raw Water Reservoirs. Construct one new sludge lagoon to help reduce loading to existing ponds Replace existing clarifiers and filters with three 2.0 mgd modular treatment units that include adsorption clarifiers (media contact clarifiers) and dual media filters. Install new UV disinfection system for Cryptosporidium inactivation 	 Install new raw water screen either at WTP site or at canal. Install floating decanters in Raw Water Reservoirs. Construct one new sludge lagoon to help reduce loading to existing ponds Install three 1.0 mgd new modular treatment units that include adsorption clarifiers (media contact clarifiers) and dual media filters. Demolish existing Plant #2 clarifier and Plant #2 filters. Install new UV disinfection system for Cryptosporidium inactivation Pipeline Alignment 2 with connection points at Penn Valley and at Minnow Way in LWW. Supplying full demand for 6 months of the year. <i>Optional</i> – One hydroelectric power generating unit on pipeline.

Table ES-7: Pipeline and Water Treatment Plant Alternative Summary

ES-1.12 Evaluation of Combined Alternatives

ES-1.12.1 Preliminary Cost Estimate

The summary of the preliminary cost estimates and 20 year net present values comparing the two options are shown in Table ES-8.

Cost	WTP Upgrade Only (Alternative 1-B)	Intertie Pipeline Only	WTP Upgrade & Pipeline (WTP Alt 2-B + Pipeline Alignment 2)
Construction Estimate	\$8,561,000	\$14,523,000	\$19,636,000
LWW WTP O&M Per 1,000 Gallons Treated	\$0.94	n/a	\$0.94
E. George WTP O&M Per 1,000 Gallons Treated	n/a	n/a	\$0.70
Total O&M 20 year NPV	\$6,870,000	n/a	\$5,630,000
Pipeline Reimbursement Policy	n/a	\$3,631,000	\$3,631,000
Total 20 year NPV Cost	\$15,431,000	\$10,892,000	\$21,635,000
Optional			
Hydroelectric Cost Estimate	n/a	\$1,050,000	\$1,050,000
Hydroelectric 20 year NPV Revenue	n/a	\$670,000	\$670,000

Table ES-8: Preliminary Cost Estimates and 20 Year NPV

ES-1.12.2 Advantages and Disadvantages

The advantages and disadvantages of both options are provided in Table ES-9.

Option	Advantages	Disadvantages
WTP Upgrade Only	 Construction limited to WTP Site Lower water age due to proximity of supply Lower capital cost 	 No redundancy for WTP. If WTP fails, LWW tanks are only emergency water storage. Reduced operational flexibility with single source of supply No ability to add additional customers to the system along pipeline alignment
WTP Upgrade & Intertie Pipeline	 Redundancy for LWW development supplied by WTP and E. George supply WTP can be offline for about 6 months of the year WTP upgrade much easier because plant doesn't need to be online constantly Ability to add additional customers to the system along pipeline alignment Pipeline reimbursement fees allows for some repayment over the facilities lifetime 	 Higher capital investment for pipeline and WTP upgrades.

ES-1.13 Recommendation

The recommended alternative is to construct the intertie pipeline along Alignment 2 to connect E. George to LWW. Once the LWW WTP can be shutdown as the LWW system is supplied by the pipeline, then upgrade the WTP according to Alternative 2-B.

1 Introduction

The Nevada Irrigation District (NID) has retained HDR to complete a study of the drinking water supply system for the Lake Wildwood (LWW) water system and meet expected future demands for water. Lake Wildwood is currently served by an existing water treatment plant (WTP) that is the sole supply of drinking water to the community. The WTP while close to 40 years old, has historically met the water demands in the system; however, during peak demand periods the plant has been required to operate close to the maximum capacity, leaving little spare capacity for any future system growth or redundancy.

This analysis examines the potential future water needs in the Lake Wildwood system and alternatives to increase the water supply capacity, along with increasing reliability. Alternatives to upgrade the WTP are analyzed which could increase capacity and plant reliability, but still relies on a single source of supply to meet water demands. Therefore, a second set of alternatives are analyzed which include extending a pipeline from the existing Elizabeth George Water Treatment Plant (E. George WTP) to provide a second source of water supply, significantly increasing the reliability of the system. Finally, these two sets of alternatives are compared to recommend a final project which best meets the existing and future water demands and provides the most benefit to the District and its customers.

This report describes the analyses HDR performed, including a demand analysis, intertie pipeline alternatives comparison, WTP improvement alternatives, and final comparison of all alternatives. The following sections describe in detail how these analyses were performed and the criteria used to compare alternatives.

2 Demand Analysis Summary

In October 2016 HDR performed a capacity study for the Lake Wildwood Water Treatment Plant (Appendix A). From 2006 to 2014 the historic average day demand (ADD) and maximum day demand (MDD) were 1.19 and 2.97 MGD respectively. Since 2015 was a severe drought year following several previous years of drought, water demands were uncharacteristically low so where not used in the demand analysis. A conservative peaking factor of 2.5 was used for future planning purposes, as lower demands impacted by economic recession and drought between 2006 and 2014 may rebound in the future. Four scenarios of future demand were analyzed; however, it should be noted that due to recent drought conditions, the demand since 2004 has not increased (0% growth). Therefore, projecting historic growth into the future results in no increase in demand. Descriptions of these scenarios and the future ADD and MDD associated with each are shown in Table 2-1. Population growth was used at the primary driver of future water use patterns.

Table 2-1: Summary of Future Demands

Description		2017	2027	2037
Scenario 1: Historic Population will continue to grow at the same rate as observed between 2006 and 2014, 0%	ADD (MGD) MDD (MGD)	1.19 2.97	1.19 2.97	1.19 2.97
Scenario 2: Low Demand Population will grow at the estimated low average annual rate. ¹ .	ADD (MGD) MDD (MGD)	1.20 3.00	1.37 3.42	1.56 3.89
Scenario 3: High Demand Population will grow at the estimated high average annual rate. ¹	ADD (MGD) MDD (MGD)	1.21 3.04	1.54 3.85	1.95 4.88
Scenario 4: Full Build-out Implementation of all proposed developments in the LWW service area within the next 20 years.	ADD (MGD) MDD (MGD)	1.21 3.02	1.44 3.59	1.66 4.16

¹Low and high estimated annual growth rates based on the 2015 NID Urban Water Management Plan (2016)

Assuming a net capacity of the existing LWW WTP of 3.6 MGD (4.0 MGD total capacity), Table 2-2 summarizes the year that the MDD for each scenario would exceed the current capacity.

Table 2-2: Future Demand Timeframe to Exceed LWW WTP Capacity

Scenario	Year MDD Exceeds LWW WTP Capacity
Scenario 1: Historic	Not Exceeded by 2037
Scenario 2: Low	2031
Scenario 3: High	2024
Scenario 4: Build-Out	2027

This demand analysis suggested that improvements to LWW WTP focused on increasing capacity were needed to plan for future demands. Even the addition of a new development with approximately 0.25 MGD of ADD (about 820 new residential dwelling unit connections) would reach the net LWW WTP capacity of 3.6 MGD.

3 Project Need and Key Criteria

As determined from the demand analysis, the existing LWW WTP is expected to reach the maximum capacity within the next 10 years. Typically supply facilities are operated with some

spare capacity to account for maintenance and equipment failure, so the realistic timeframe for an increase in water supply is likely less than 10 years. A planning level decision to select the best alternative is needed now to provide sufficient time to fund, plan, design, and construct the improvements, which takes years to complete.

The existing LWW WTP was built in stages with the oldest portion over 40 years old. The WTP is reaching the end of its useful life and many components will require upgrade or replacement in the near future.

One component of concern for the existing WTP supply is the 14-mile long Newtown Canal that conveys raw water supply to the WTP. This canal is routed along steep hillsides which are subject to landslides, tree damage and excess storm run-off. During storms the storm water is released at several spills to minimize potential damage to the canal berm. The plant will have no water during this time. The quality of the water during storm events may be too high in turbidity to treat due to the storm water run off in the canal system. If the canal is damaged and cannot convey water, the entire LWW system would be without a water supply until the canal is repaired.

Water supply reliability is a key concern of the District and efforts have been made throughout NID's water system to intertie supply facilities, which greatly increases reliability and operational flexibility. These both provide for the ability to maintain a consistent service to the District's customers. This is one of the main considerations for including E. George WTP intertie pipeline alternatives in the study. The pipeline would provide a second and/or alternate source of treated supply which could be used to replace or supplement treated water in the event of a WTP failure or raw water interruption. This treated water service includes drinking, fire protection and emergency supplies. Likewise, the WTP would also provide a redundant supply to the LWW development in the event the pipeline is taken out of service, but could not provide supply to customers along the E. George supply pipeline.

A new pipeline would also provide another benefit, connection of customers to the public water system who are not currently connected. Because the pipeline would be routed through the District's existing service area, properties along the alignment could be connected to the water system, increasing water supply reliability (and potentially quality) to those new customers.

4 Elizabeth George Intertie Pipeline

4.1 Background

Four preliminary alignment alternatives were presented to HDR by NID in the initial stages of the project. These alignments run from the corner of Rough and Ready Highway and Bitney Springs Road to connect to LWW at various locations within the system. HDR has refined these alignments through looking closely at parcel maps, property lines, existing road routes, and site visits, so that the alignments described below represent four optimal options to join LWW to the E. George WTP. All four alignments with along the proposed alignments are shown in Figure 4-1. The general features for this project along with a description of each alignment are described below.

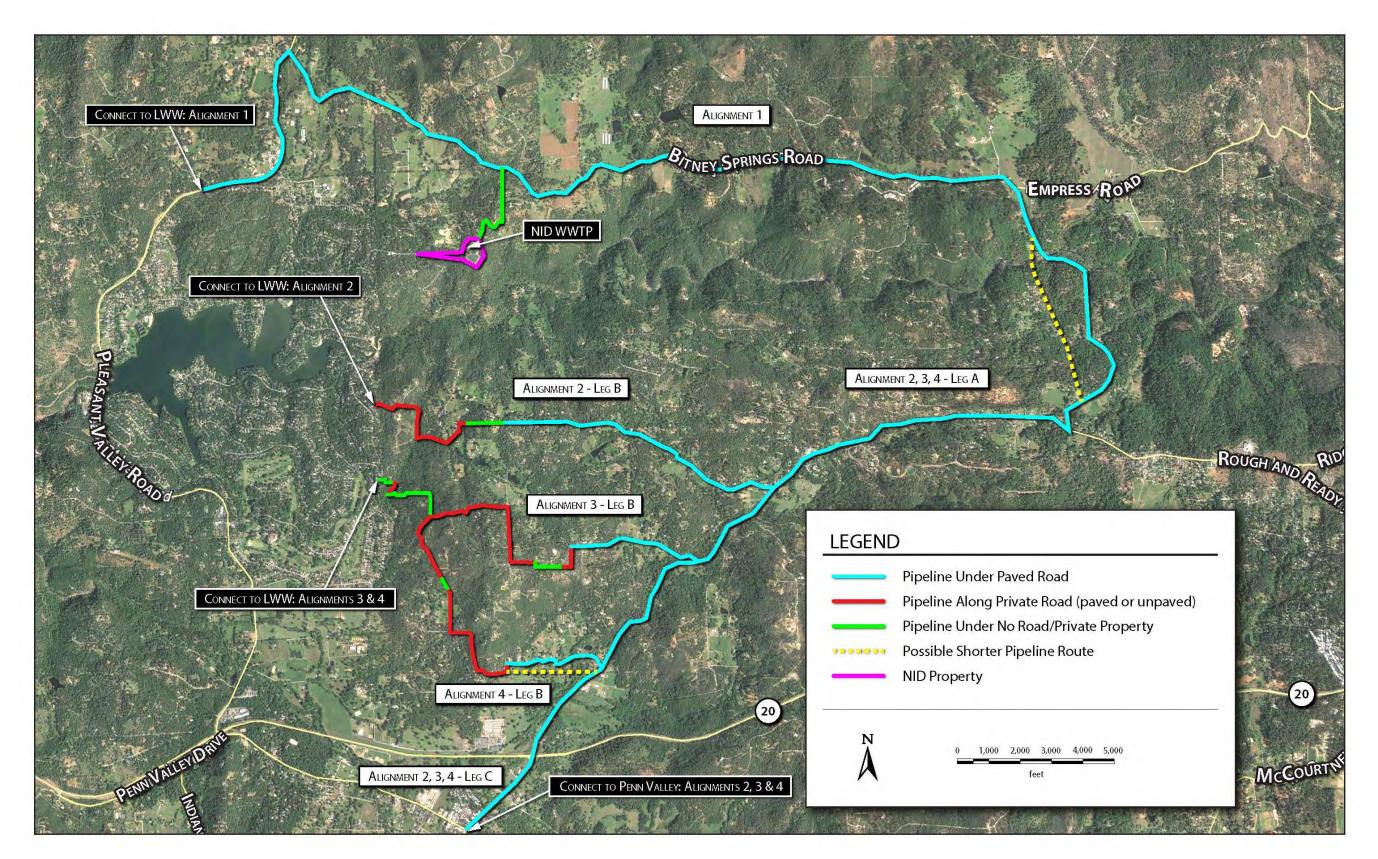


Figure 4-1: Proposed Alignment Alternative Routes

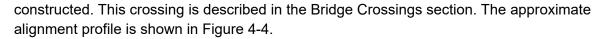
FX

4.1.1 Proposed Alignment Alternatives

The proposed alignment alternatives are presented in further detail in the proceeding sections. Each alignment is assumed to use available standard 16" pipe with a maximum pressure of 230 psi (+/- 8%). Because of the high head at the beginning of the pipeline, each pipe reaches 230 psi before the connection points so pressure reduction is required to maintain the pipeline pressure within NID service pressure limits. The connection locations and potential pressure relief locations are shown on the approximate alignment profiles in Figure 4-2 through Figure 4-5.

On all alignment profiles the estimated hydraulic grade line (4 feet of loss for every 1,000 LF) represents the total HGL for the pipeline (black line at top) with no pressure reduction. This line shows the amount of available pressure within the pipeline alignments. The figures also show the point where the pressure reaches 230 psi and pressure reduction is required. The circles at the connection points represent the pressure in the existing systems that need to be matched in the new pipeline. Locations for In-Conduit Hydroelectric facilities are also shown in the figures and are discussed further in that section below.

ALIGNMENT 1


Alignment 1 would run the entire length of Bitney Springs Road between Rough and Ready Highway and Pleasant Valley Road. The proposed pipeline runs along Pleasant Valley Road to meet up with the Tank No. 2 site. In order to provide a backup of treated water to the LWW WTP there would also be a branch from the alignment along Bitney Springs Road that runs along the edge of a property line south to the WTP to connect downstream of the treated water pumps. This alignment would require support along the bottom or side of the bridge located on Bitney Springs Road above Deer Creek. More information on the proposed bridge crossing is given in the Bridge Crossings section. The approximate alignment profile is shown in Figure 4-2.

ALIGNMENT 2

Alignment 2 through Alignment 4 have a Leg A and Leg C that would navigate Rough and Ready Highway between Bitney Springs Road and Penn Valley Drive to connect to the Penn Valley water system to supply demand in that area. This section of the alignments include a small bridge crossing at the southern end of Rough and Ready Highway described in the Bridge Crossings section. Leg B of Alignment 2 would run along Rough and Ready Road until Riffle Box Road, where it cuts across private property to eventually run south onto Empty Diggins Lane. The alignment would run north onto Bosa Drive which connects to Minnow Way in LWW. The approximate alignment profile is shown in Figure 4-3.

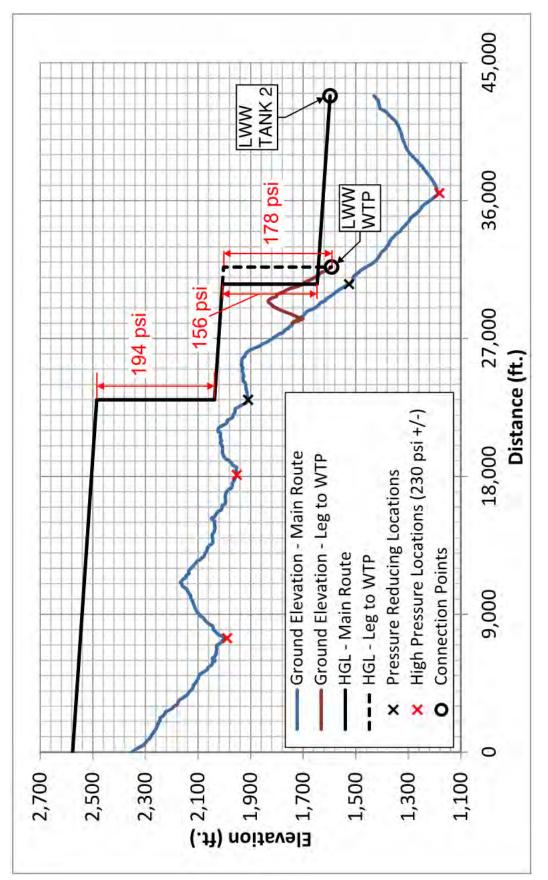
ALIGNMENT 3

Leg B of Alignment 3 cuts through Cook Road to its end, runs south on Dolomite Court, and then cuts across the private property to meet up with Lively Wood Lane. The pipeline would then head north along Miners Way, turn west onto Diersak Way to continue onto Black Forest Road. From Black Forest Road the alignment would run along the edge of property lines until meeting up with Empty Digging Lane. Running across the edge of a property line, the alignment would connect to LWW through the Tank No. 5 site. Leg B of Alignment 3 includes a small bridge crossing at the eastern edge of Cook Road where a support structure would have to be

ALIGNMENT 4

Leg B of Alignment 4 turns off Rough and Ready Highway onto Valley Drive. Valley Drive leads to Pioneer Way which, after a couple bends, leads to Cavitt Lane where the pipeline would head north under a private driveway to Raintree Lane. Raintree Lane leads to Black Forest Road where the alignment would then follow the same route of Alignment 3 for access into the LWW system at Tank No. 5. The approximate alignment profile is shown in Figure 4-5.

4.1.2 Pipeline Flow


Based on the Demand Analysis the estimated flow through the pipeline for each month of the year was determined. The values are based upon only using the LWW WTP for approximately six months of the year during the summer, with the pipeline supplying the full demand during the winter. The assumed percentage of total flow being supplied by the pipeline for each month is summarized in Table 4-1.

Month	% Demand Supplied by Pipeline
January – April	100%
Мау	75%
June – August	50%
September	65%
October	75%
November – December	100%

Table 4-1: Water Demand Supplied by Pipeline during the Year

Based on these percentages, the annual average of flow supplied by the pipeline is 70%. This annual percentage along with the flow projections were used to determine future pipeline flows for hydroelectric power generation estimates in the section below.

Nevada Irrigation District | Lake Wildwood Options Analysis Report Elizabeth George Intertie Pipeline

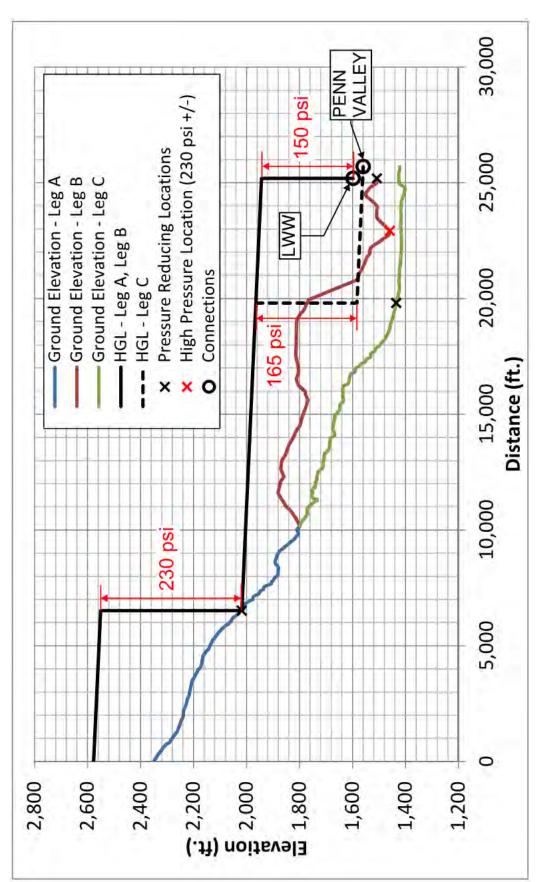
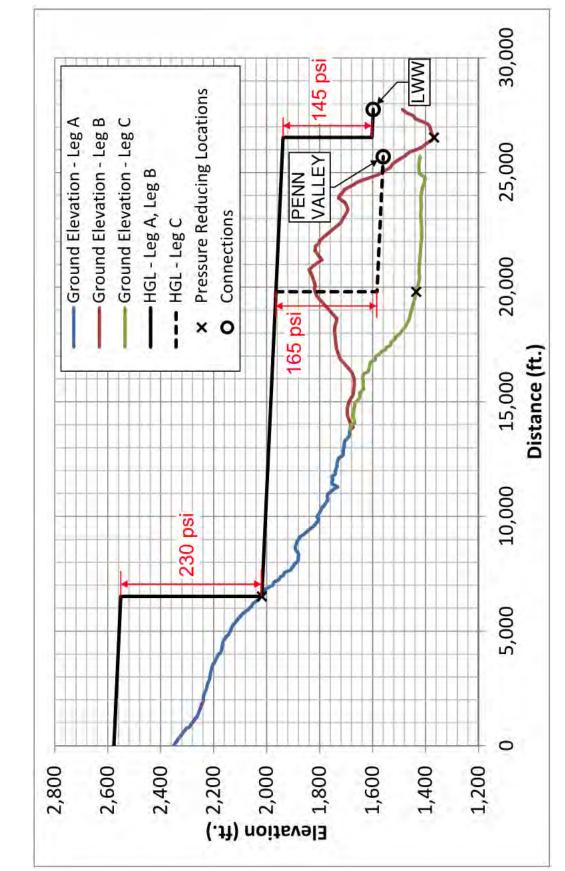



Figure 4-3: Approximate Alignment 2 Profile and Pressure Reducing Locations

9 | July 20, 2017

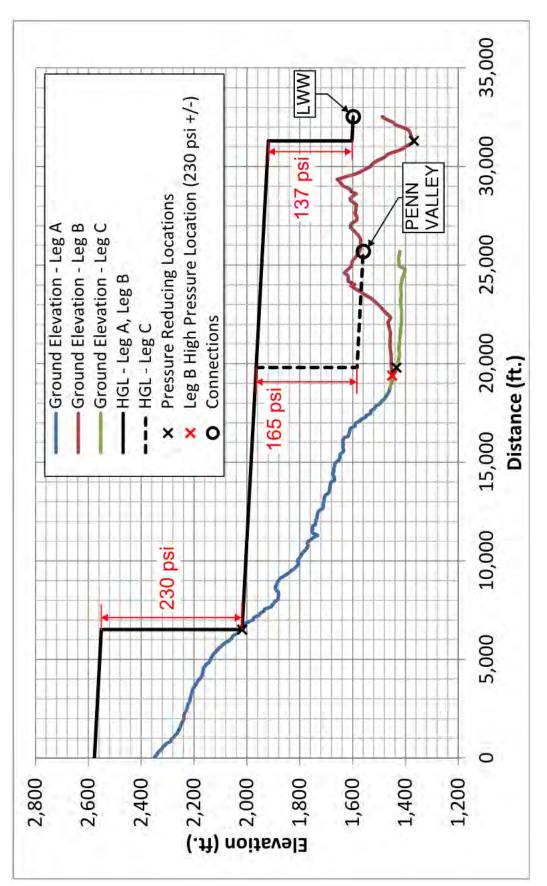


Figure 4-5: Approximate Alignment 4 Profile and Pressure Reducing Locations

4.1.3 In-Conduit Hydroelectric

HDR performed a reconnaissance level investigation of the hydropower potential of the various pipeline alternatives being evaluated. The work has been performed at a reconnaissance level with the intent of making an initial cost/benefit analysis.

It is assumed that any new hydropower generation would be located at the same location and in parallel with any required pressure reducing valves (PRV). In reviewing the various pipeline route options, two basic opportunities for hydroelectric generation were identified. Option 1 would be a single-unit powerhouse located on the main line before branching and would use all available flow and pressure head. The remaining locations where pressure needs to be reduced would have pressure reducing valves. Option 2 would have multiple powerhouses; one at each location where pressure reduction needs to occur. Having multiple powerhouses would increase the capital cost, but also increase the annual payback.

The powerhouse would be a structure with a concrete foundation, concrete masonry unit walls and a metal clad wood truss roof. The powerhouse would contain a turbine, synchronous generator and associated switchgear and controls. It is assumed that no new access would be required and that transmission would be via a short overhead pole line to local utility distribution line. Water would be discharged at atmospheric pressure and would re-enter the pipeline route immediately downstream of the powerhouse. If services are located close to the downstream end of the hydro unit, sufficient pressure may not be available, so a short parallel service line or pressure turbine may be needed. This should be addressed in the preliminary design of the pipeline and hydro unit.

Turbine sizing was based upon the maximum flow rate the project would see over the life of the analysis. Due to the relatively constant efficiency curve of a typical turbine over a broad range of flows, the energy generation is somewhat independent of the installed capacity. The water assumed to be available for hydroelectric generation is based on the demand analysis and pipe flow assumptions as discussed above. The total average annual flows ranged from 0.83 MGD to 1.17 MGD over the evaluation period with a peak flow used for turbine sizing of 2.91 MGD in the pipeline.

Annual energy was estimated by multiplying the average annual flow by the working pressure for each of the options. A water to wire efficiency of 85% was used for all cases. For each option a cost estimate was developed. The estimate assumes that the powerhouses will be located adjacent to and made integral with the any facilities required for the PRV's. As such, no new access would be required. It is also assumed that a low voltage electrical distribution line suitable for interconnection would be located nearby and only a minimal transmission line would be required. This assumption could have significant cost implications and would need to be verified in the field during subsequent evaluations.

A cost analysis for each option was conducted which includes capital, O&M, and energy revenue. The financial assumptions used for this analysis are summarized in Table 4-2.

Assumption	Value
Term	20 years (2017-2037)
Energy Base Rate	\$0.0892 / kWh
Rate escalation	4.0%
Annual O&M	\$18,000
Inflation Rate	2.0%
Discount Rate	4.0%

Table 4-2: Hydroelectric Economic Evaluation Assumptions

To the subtotal of direct construction costs, engineering of 15% and a 30% contingency were added to arrive at an overall project cost estimate. The results of the evaluation indicate that a single powerhouse would be more cost effective than multiple units for all alignments. The values vary slightly for each alignment alternative, but produce the same conclusion. An example for Alignment 2 is summarized in Table 4-3. Cost estimates and power generation estimates for each alignment are included in Appendix B-2.

Table 4-3: Alignment 1 Hydroelectric Benefit and Cost for Option 1 and Option 2

Option	Capital Cost	Power Generation NPV	Benefit/Cost
1	\$1,050,000	\$670,000	0.64
2	\$2,730,000	\$1,340,000	0.49

Based on this assessment, the alignment alternatives analysis in the following sections assumes a single hydro unit for each alignment in the evaluation criteria. However, the actual power generated is based on the available head and has been calculated for each alignment as part of the evaluation.

4.1.4 Bridge Crossings

Three different bridge crossings are encountered through the alternative alignments. The large bridge crossing on Bitney Springs Road along Alignment 1 seems most suited for supporting the pipe on the bridge. The bridge is shown in Figure 4-6 below. The bridge span is too long for a separate free standing pipe support structure without additional footings/columns, and trenchless installation under the creek is likely cost prohibitive.

Figure 4-6: Bridge Crossing for Alignment 1 on Bitney Springs Road

For the smaller bridge crossings on Rough and Ready Highway and Cook Road, the most cost effective approach is to support the pipeline on a separate pipe support structure away from the bridge. Both bridges (shown in Figure 4-7) are on the older side and likely not suitable to support the pipe fully, or require extensive changes to their substructure that would be required to construct a pipe support directly under the bridges.

Figure 4-7: Bridge Crossing on Rough and Ready Highway (Left), and Bridge Crossing on Cook Road (Right)

4.1.5 Access into Lake Wildwood

Following receipt of the initial alternative alignments, the largest changes in the pipeline routes are where there is access into the LWW system. Alignments 1 and 2 provide the easiest access as they connect to LWW through existing roads (besides the addition of a connection point for Alignment 1 near the WTP).

Alignment 3 and 4 are more difficult to connect because the development is built out on the south/east border and the houses are quite close together, making access for a pipeline very difficult. Therefore, Alignments 3 and 4 are routed along property boundaries and connect at the Tank No. 5 site. This increases the easement purchases for those alignments, but is the most feasible option due to narrow access corridors in the development between houses.

4.1.6 Service Connections

The location of the connection points into LWW were selected because they are located in the higher system pressure zones. They were selected as such, because the pipeline pressure will be above the Zone 1 pressure and would need to be reduced to match Zone 1. The supply would then be re-pumped back up to the higher zones in the LWW system, resulting in wasted pumping energy. Using the pressure zone map for LWW as well as the hydraulic model, the previously described connection locations connect to LWW at Zone 2 for Alignment 1, and Zone 3 for Alignments 2 through 4.

Alignments 2 through 4 allow for a connection to LWW as well as to the Penn Valley system. Connecting to this system allows for the Penn Valley area to increase general capacity and to provide an additional "feed" in the PV system, as there is only 1 point of connection between LWW & PV.

Along each alignment alternative there are opportunities for new service connections at current construction conveyances, in home raw water users, to connect to the treated water line. These users could benefit from connection to the public water system by improving health and safety as they must maintain an alternate source of potable water, such as bottled water. The number of possible construction conveyances for each alignment was counted based mapping data provided by NID (Appendix D). Where a property line or road separates the area identified as a construction conveyance, the areas were counted as separate new services. No variance parcels were analyzed as part of this report. The numbers of construction conveyances with frontage within 1,000 feet of each pipeline alignment are presented in the Customer Availability section.

Additionally all parcels fronting the pipeline will have an opportunity to connect. The total number of service connections along the pipeline route is estimated for each alignment. This estimate only includes parcels that have frontage along the pipeline.

The Pipeline Reimbursement Policy covers reimbursement of the distribution portion (8" pipe size) of the pipeline including appurtenances. However, fire hydrants, pumps and PRVs that have a regional benefit are not included. The cost to the property owner is based on the ratio of distribution to transmission main as indicated in the 2014 Bartle Wells Capacity Charge Update page 17. For a 16 inch pipe is 75% transmission and 25% distribution.

4.1.7 System Modeling

Models of the LWW and E. George systems were provided by NID for this analysis. The LWW model was recently updated by ID Modeling to include operational set points for pump stations, control valves, etc. It was also compared to operations data from the District to closely approximate the actual operation of the system.

The updated LWW model and E. George model were combined with the new pipeline alignments for the purpose of determining impacts resulting from supplying LWW through the pipeline, and determining improvements needed to mitigate the impacts.

Each alignment alternative was modeled and the LWW system supplied from the combined WTP/new pipeline, and the new pipeline alone. When supplied by only the pipeline, the system demands were limited to 2.5 mgd since this is considered the nominal capacity for the pipeline. The LWW system currently supplies all water to Tank 1, in Zone 1, and the water is pumped to the higher zones from there. Since all alternatives connect to the LWW water system above Zone 1, improvements to connect the higher zones to supply Zone 1 were needed.

The pressures in each zone were maintained at the current level, and the new pipeline supply pressure was reduced to match those currently observed in each zone where the connection is located. Therefore, no significant differences in system pressure or operation were required to provide supply via the new pipeline to the current LWW service area. Some changes in tank and pump station operation may be needed to achieve optimal performance, but the modeling indicates that no major changes should be required.

Table 4-4 provides a summary of the improvements needed for each alignment and modeling details are included in Appendix C.

Alignment	Required Improvements
1	300 feet new 12-inch piping in Via Villago Rd and new PRV station to connect Zone 2 supply to Zone 1
2	900 feet new 12-inch piping in Chaparral Dr and new PRV station to connect Zone 3 to Zone 1, and 4200 feet new 16-inch piping to connect new supply to Zone 2
3	1200 feet new 16-inch piping in Chaparral Dr and new PRV station to connect Zone 3 to Zone 1, and 4200 feet new 16-inch piping to connect new supply to Zone 2
4	1200 feet new 16-inch piping in Chaparral Dr and new PRV station to connect Zone 3 to Zone 1, and 4200 feet new 16-inch piping to connect new supply to Zone 2

Table 4-4: Required System Improvements for Each Alignment

Water age was also considered for each alignment to determine if a significant difference in age exists between alignments. Overall, the difference in connection locations has minimal impact on water age in the LWW system, however, Alignment 1 results in a significant increase in water age to Penn Valley. For all alignments, the water is required to travel a fairly long distance from the E. George WTP to the LWW distribution system. However, this is offset in portions of the LWW system by more evenly distributed water age. This results because the supply from the pipeline enters the system at a more central location and in a higher pressure zone. In the existing system, all water is pumped up to the various pressure zones from a single source near the WTP, resulting in low water age near the supply but higher water age in many other parts of the distribution system. The average water age for the existing LWW system supplied by only the WTP, and the system supplied by the E. George pipeline are shown in Figure 4-8 and Figure 4-9.

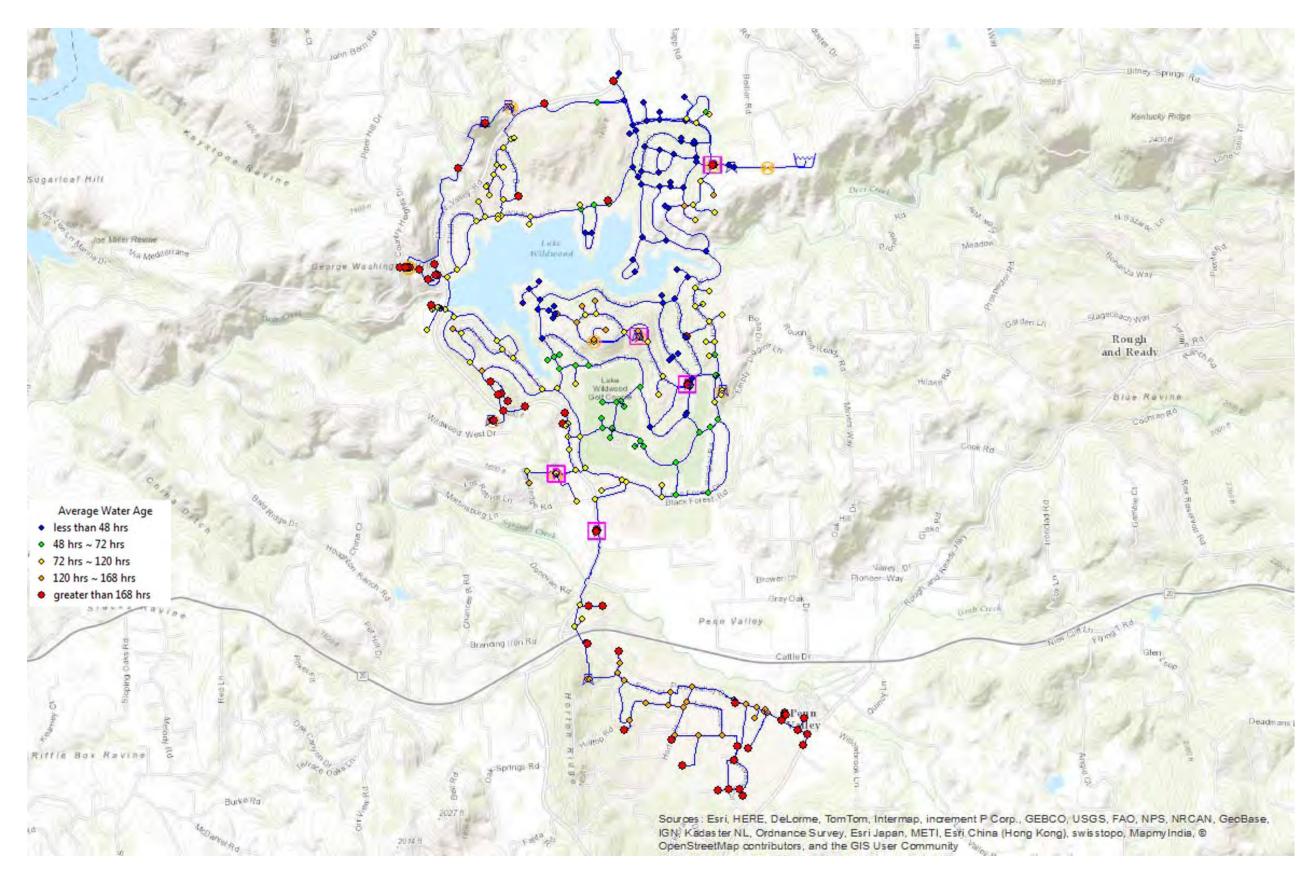


Figure 4-8: Existing LWW System Average Water Age (ADD)

Figure 4-9: Pipeline Supply Only - LWW System Water Age (ADD)

As shown in the figures, the water age with the WTP only and the WTP/pipeline is not significantly different for the LWW distribution system. The analysis was completed with the pipeline to LWW only and the Penn Valley area continues to have the highest water age, however, this could be reduced significantly if the pipeline leg to Penn Valley is constructed, as shown in Figure 4-10. Since Alignment 1 does not include a pipeline to Penn Valley, water age in this area could be a significant issue with this alignment.

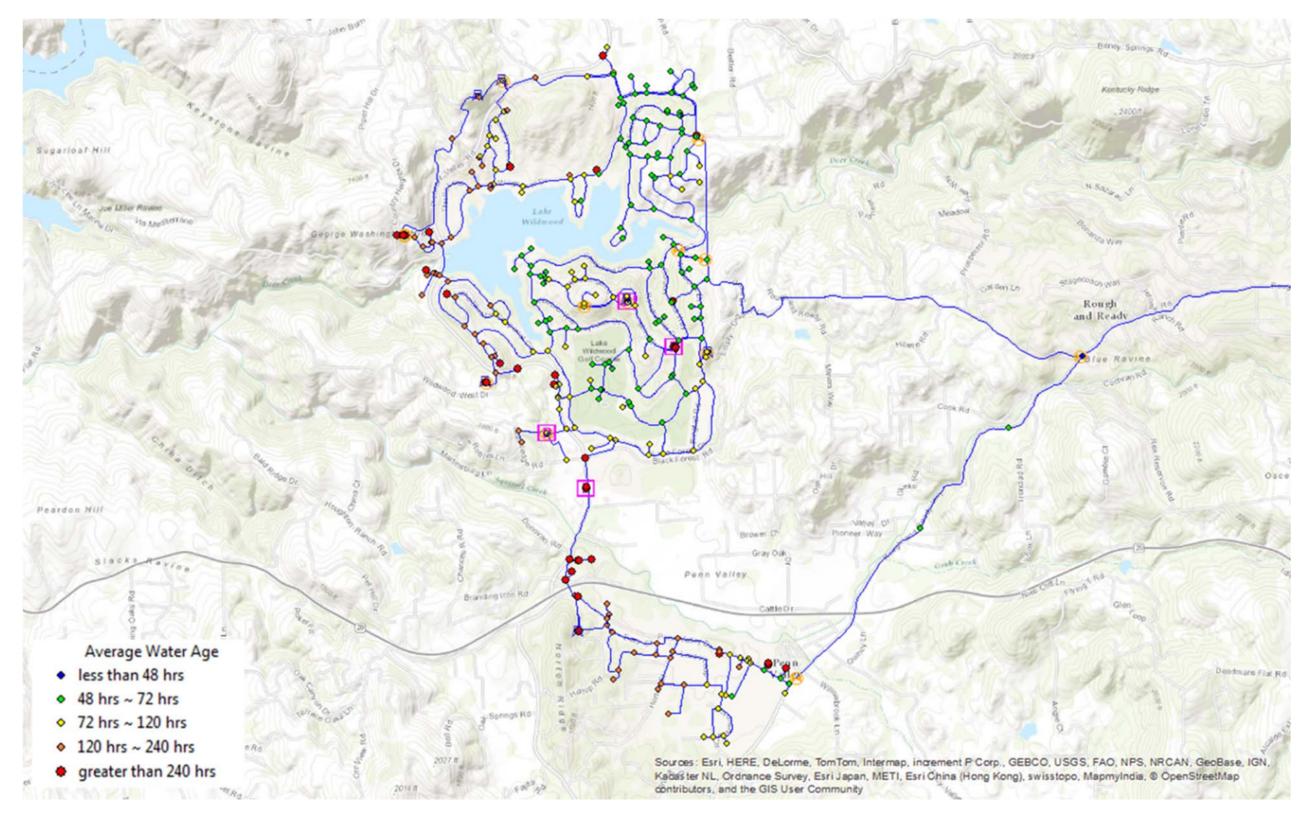


Figure 4-10: Pipeline Supply Only with Connection to Penn Valley - Water Age (ADD)

The analysis criteria below were selected and given percentages based on level of importance by NID staff. These criteria are shown in Table 4-5.

Criteria	Weight
Construction Cost	20%
Design Impacts/Considerations	15%
Operations & Maintenance	10%
Customer Availability	30%
Water Quality	25%

Table 4-5: Alignment Analysis Criteria Weighting

For each criterion, there were sub-criteria that were used for the final analysis. The ranking system used scores from 1 to 4 with 1 being the most favorable and 4 the least favorable. The other two scores were interpolated between 1 and 4 based upon comparison to the alignments that received the 1 or 4.

4.2.1 Construction Cost (20%)

A comparative cost estimate was calculated for each alignment. For a comparative estimate a base value of \$210 per linear foot was used for the 14-inch pipelines (comparable to tabulated construction costs provided by NID). A base constructability factor (CF) of 1.0 was used to quantify overland construction on flat terrain at a base cost of \$210 per linear foot. Other CFs used for the comparative estimate and additive factors (i.e. pavement restoration, traffic concerns, etc.) are shown in Table 4-6.

Description of Construction Conditions	Factor
Overland construction, flat terrain	1
Pipe supported on bridge	3
Pipe support structure	5
Additive Factors:	
Pavement demo and restoration	0.25
Pavement addition	0.15
Extra rock, flat ground	0.5
Light traffic	0.1
Heavy traffic	0.2
Clearing and grubbing off road areas	1.5

Table 4-6: Constructability Factors and Additives

The total cost of each alignment was the sum of the base cost multiplied by the CF and the length of each type of terrain in a given alignment. The cost tables for each alignment are shown in Appendix A. Easement costs were calculated at \$4 per square foot (which was based upon a review of easement purchases by NID) with a 25 foot wide easement. Total costs and rank are summarized in Table 4-7 shown below with the full estimate given in Appendix B-1.

Alignment	Total Cost	Cost Rank
1	\$ 16,930,000	4.0
2	\$ 14,523,000	1.0
3	\$ 15,161,000	1.8
4	\$ 15,102,000	1.7

Table 4-7: Alignment Comparative Costs and Ranking

The construction cost will be offset over time due to the Pipeline Reimbursement Policy. The Pipeline Reimbursement Policy allows for District to recover certain costs as a result of District constructed pipelines. All parcels fronting the pipeline will have an opportunity to connect. At this time, for the purpose of service connection counts, variances and any possible waterline extension were not included so a cost per parcel is not currently determined. For the purpose of cost evaluations, the cost of construction of the pipeline and appurtenances can be offset based on the ratio of distribution to transmission main as indicated in the 2014 Bartle Wells Capacity Charge Update page 17 for a 16 inch pipe is 75% transmission and 25% distribution.

4.2.2 Design Impacts/Considerations (15%)

The design impacts ranking was calculated based upon the alignment rankings for constructability factor, pipeline length, easement length, difficulty of access into LWW, and feasibility of a micro-hydro power generation system.

MICRO HYDRO POWER GENERATION

The feasibility of a micro-hydro power generation system for each alignment was quantified based upon each benefit-cost ratio. For each alignment the generator size was calculated based upon the available head and what pressure relief was allowable at that section of the alignment. The cost and return estimates for a micro-hydro power generation system for each alignment are shown in Table 4-8. A detailed cost estimate is provided in Appendix B-2.

Alignment	Head Available	Generator Size	Capital Cost	NPV of 20-year Revenue	B/C Ratio
1	194 ft	150 kW	\$1,010,000	\$510,000	0.50
2	230 ft	180 kW	\$1,050,000	\$670,000	0.64
3	230 ft	180 kW	\$1,050,000	\$670,000	0.64
4	230 ft	180 kW	\$1,050,000	\$670,000	0.64

Table 4-8: Capital Cost and Benefit/Cost Ratio Estimates for Micro-Hydro Power Generation

4.2.3 Operations & Maintenance (10%)

The operations and maintenance ranking was determined through the total easement lengths that will need to be maintained by NID for access and the number of air release valves (ARVs) and blow-offs (BOs) that are required for each alignment.

4.2.4 Customer Availability (30%)

Customer availability for each alignment was ranked based upon access to construction conveyances and an estimation of the population density near the proposed pipeline. A map of construction conveyances was provided by NID during the initial phase of the project (Appendix D). The count of construction conveyances and possible service connections for each alignment is given in Table 4-9.

Alignment	# Constructed Conveyances	Total # Service	Connections
		Developed	Undeveloped
1	3	108	41
2	19	162	50
3	5	150	49
4	5	150	46

Table 4-9: Number of Construction Conveyances and Service Connections for Each Alignment

4.2.5 Water Quality (25%)

The ease of delivering supply to customers and water quality impacts (more testing, flushing, "living with" changed results that are state compliant, changes of operation of tanks, etc), and the customer impacts due to pressure changes were ranked based on modeling of each alternative. A significant factor for this criterion is the amount of system modification required to incorporate the pipeline supply into the LWW system. The rankings for each alignment are shown in Table 4-10.

Table 4-10: Alternative Alignment Water Quality Rankings

Alignment	Rank	Rationale
1	4	Longest = maximum water age, very high in Penn Valley
2	1	Shortest = minimum water age, connects at middle of system
3	3.5	Longer alignment, most improvements needed to connect to system
4	3	Second longest alignment, most improvements needed to connect to system

4.3 Evaluation Results

The results of the alignment analysis can be seen in Table 4-11. Alignment 2 received the lowest ranking total, making it the most favorable alternative, with Alignment 1 receiving the second best ranking total.

			I able 4-11: Al	ignment An	l able 4-11: Alignment Analysis Results				
	Weight	Ali	Alignment 1	Aligi	Alignment 2	Aligr	Alignment 3	Alig	Alignment 4
	(%)	Rank ²	Weighted	Rank ²	Weighted	Rank ²	Weighted	Rank ²	Weighted
Construction Cost ¹	20%	4.0	0.8	1.0	0.2	1.9	0.4	1.8	0.4
		46,530 large b	46,530 ft. total length, large bridge crossing	40,690 ft 1 bridge	40,690 ft. total length, 1 bridge crossings	39,680 ft. 2 bridg∈	39,680 ft. total length, 2 bridge crossings	39,420 ft. bridg€	39,420 ft. total length, 1 bridge crossing
Design Impacts/	15%	1.9	0.3	1.0	0.2	4.0	0.6	3.8	0.6
Considerations		Largo construc CF ³ , sr purchase B/C ³ ra	Largest length of construction with lowest CF ³ , small easement purchase, and the lowest B/C ³ ratio for a hydro	Second la of pipe smalles purchase, ratio for a	Second largest length of pipe, second smallest easement purchase, highest B/C ³ ratio for a hydro facility.	Second s length, se easemer highest B/ hydro	Second shortest pipe length, second largest easement purchase, highest B/C ³ ratio for a hydro facility.	Shortest largest purchase ratio for a	Shortest pipe length, largest easement purchase, highest B/C ³ ratio for a hydro facility.
Operations &	10%	1.0	0.1	2.3	0.2	3.4	0.3	4.0	0.4
Maintenance		Lowe required	Lowest number of required ARVs/BOs ³ and	Secon number o	Second smallest number of ARVs/BOs ³	Largest ARVs/BOs	Largest number of ARVs/BOs ³ and largest	Largest ARVs/BC	Largest number of ARVs/BOs ³ and some
		easiest a	easiest access to pipelifie route	arid sorne makin somewł	and some easements making access somewhat difficult.	easemer making ac	easement purchase making access difficult.	access di	easements making access somewhat difficult.
Customer	30%	4.0	1.2	1.0	0.3	2.6	0.8	2.7	0.8
Serviceability		Lowes conveya Valley pos ex	Lowest constructed conveyances, no Penn Valley connection, possible other extensions.	Large cons conveya denser	Large number of constructive conveyances, near denser population.	Small r cons conveyanc density	Small number of constructive conveyances and lower density population.	Small cons conveyan dense	Small number of constructive conveyances and least dense population.
Water Quality	25%	4.0	0.5	1.0	0.3	3.5	0.9	3.0	1.0
		Longes maxim especiall	Longest pipe length = maximum water age, especially in Penn Valley – very high age	Shortest minimum connects of the	Shortest pipe length = minimum water age, connects to the middle of the system	Longer pip more imp needed tu sy	Longer pipe length with more improvements needed to connect to system	Second leng improvem connect t	Second longest pipe length, most improvement needed to connect to the system
Total	100%		3.4		1.1		3.0		2.9
Notae:									

Table 4-11: Alignment Analysis Results

Notes:

Length will be the primary driver of construction cost, and bridge crossings. Cost at \$15/in-dia/ft.;
 Relative ranking of alternatives will assign a 1 for the best alternative, and 4 for the worst alternative. Quantifiable rankings are interpolated between best score (1) and worst score (4). 3. CF = constructability factor; B/C = benefit/cost (20 year net present value); ARV = air release valve; BO = Blowoff valve.

ĩ Nevada Irrigation District | Lake Wildwood Options Analysis Report Elizabeth George Intertie Pipeline

5 Water Treatment Plant Upgrades

5.1 Background

The Lake Wildwood WTP has a permitted treatment capacity of 4 mgd. Before the drought, the treatment plant flow was as high as 3.8 mgd during the peak summer months. An increase in supply and reliability of treatment for the Lake Wildwood service area will be needed to meet current and future demands. There are several options to increase reliable supply, including expanding the WTP and/or providing partial supply from the Elizabeth George (E. George) WTP through a new pipeline.

The Lake Wildwood WTP was built in stages. The first stage was completed in 1972 and a second stage was completed in in 1986. The existing plant includes the following components:

- NID canal turnout and raw water pipeline to plant site
- Raw water reservoirs
- Upflow sludge blanket steel clarifiers
- Dual media circular steel filters
- Washwater ponds
- Clearwell
- Filter backwash pumps and air scour blower
- Chemical storage and feed facilities for: alum, polymer, lime, and sodium hypochlorite
- Control Building

The existing plant has generally operated well, however repairs and upgrades will be needed for continued successful operation – see Preliminary Capacity Analysis section.

5.2 Source Water Quality

The source water used by Lake Wildwood WTP originates in Deer Creek and flows through the Scott's Flat and Lower Scott's Flat Reservoirs, then through the Newtown Canal to the Lake Wildwood Water Treatment Plant (WTP). Raw water diverted from the Newtown canal is conveyed through a pipeline to the raw water ponds at the WTP site, located one half mile west of Lake Wildwood. The raw water is generally of good quality with turbidity that varies from 2 to 15 NTU with occasional turbidity spikes of 30 to 50 NTU that last for 3 or 4 days during the rainy season. The pH of the water ranges from 7.1 to 8.1 with average of about 7.6. Total organic carbon (TOC) is typically less than 2 mg/L with disinfection byproduct formation potential that meets state and EPA requirements. Because Cryptosporidium has been detected in the raw water supply, the plant has been classified as Bin 2 under the LT2ESWTR. A summary of the average and range of key water quality parameters for the raw water supply are shown in Table 5-1. This time frame encompasses both wet years and drought years; the wet year's data is presented because it will be more conservative for sizing WTP unit processes.

Table 5-1: Ka	y Water Quality,	Flow and Residua	als Generation Pa	rameters (2011-20	15)
Parameter	Average Summer	Range	Average Winter	Range	Annual Values
Temperature, deg-C	22	15-25	7.6	5-10	
Turbidity, NTU	2.5	1.2 -8.5	9.5	1.8-50	
Total Organic Carbon (TOC), mg/L	1.2	0.9 -1.9	1.3	1.0-1.9	
Alkalinity, mg//L as CaCO3	21	16-28	30	23-38	
Alum dose, mg/L	18.5	17-20	41	24-73	
Max Day Demand, mgd*					2.3
Average Daily Plant Production, mgd*	1.5		0.5		1.1
Calculated Residuals Generated, dry lb/yr					63,700

*Reference: HDR TM – Determination of Existing and Future Demands

5.3 Regulations and Treatment Goals

Treatment plants must be designed and operated to comply with California State Water Resources Control Board – Division of Drinking Water (DDW) and EPA regulations to safeguard public health. The most significant rules regarding surface water treatment include the Surface Water Treatment Rule (SWTR) and its updates, including the Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) and the Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR), the stage 2 Disinfection/Disinfection Byproduct Rule (Stage 2 D/DBP). Because Cryptosporidium has been detected in the raw water supply, the plant has been classified as Bin 2 under the LT2ESWTR. For Bin 2, an additional 1.0 log of Cryptosporidium inactivation is required using method(s) in the EPA Tool Box. Currently the plant is using two of the Treatment Performance Tool Box components: combined filter effluent turbidity less than 0.15 NTU and individual filter effluent turbidity less than 0.15 NTU. Both of these must be achieved in at least 95 percent of measurements each month to get a 0.5-log removal credit for each component. The next most cost effective component would likely be installation of UV disinfection under the Inactivation Tool Box Components category.

The LWW system is in compliance with the Stage 1 and Stage 2 Disinfection and Disinfection Byproducts Rules (D/DBPR) based on the locational running annual average (LRAA) MCL of 80 ppb for TTHMs and 60 ppb for HAAs. In 2015, the TTHMs ranged from 43 to 68 ppb (62.8 ppb LRAA), and HAAs ranged from 22 to 56 ppb (37.5 ppb LRAA). There is concern that if water from the E. George is piped to the LWW system, the long retention time could result in possible higher LRAAs for TTHMs and HAAs. Simulated distribution system (SDS) testing should be performed to determine whether or not this will be a concern. SDS testing would involve taking treated water from the E. George WTP adding chlorine and holding the sample for the same length of time as would be expected in the new transmission main and LWW distribution

system, including tanks. DBPs would then be measured to determine if DBP regulatory limits can be met. If the DBP levels are above regulatory limits, jar testing of various enhanced coagulation techniques could be tested and the SDS test repeated until a workable compliance strategy is found. Aeration of the tanks at the LWW system is another option that could be evaluated if high DBP levels are found. In addition to the above regulations, the water treatment plant will have to comply with the filter backwash rule (FBR), which requires that if filter backwash water is to be recycled, it must goes to the head of the plant prior to the coagulant addition point at a rate not to exceed 10 percent of the incoming flow.

The Lead and Copper Rule is intended to control the levels of lead and copper in the water system through corrosion control. This can be achieved by increasing the treated water pH and/or adding a corrosion inhibitor. The current practice of adding lime to raise the pH to 7.5 has kept the LWW water system in compliance for lead and copper. The plant has recently switched to adding sodium hydroxide, which should provide the same results as adding lime.

DDW also has design standards for new treatment plants. Title 22 California Code of Regulations Section 64658 requires that the average daily effluent turbidity goal is 0.2 NTU for conventional filtration plants (applies only if tool box for Cryptosporidium is not being used). Section 64659 requires that multiple filter units to provide redundant capacity for backwash and maintenance. Standard dual media filters may be designed for filtration rates up to 6.0 gpm/sf without any special approval required. A maximum filtration rate of 5.0 gpm/sf is considered to be conservative. Filters with less than standard media depth of are subject to possible lower filtration rates. Full scale testing may be required by DDW if rates above the current design are to be approved.

5.4 WTP Preliminary Capacity Analysis

Preliminary results of the Demand Analysis TM (Appendix A) show that a maximum day plant capacity of 3.9-4.9 mgd will be needed by the end of the 20-year planning period. Future average day demand is estimated to be in the range of 1.6-2.0 mgd. The existing WTP has a permitted treatment capacity of 4.0 mgd with net capacity of 3.6 mgd after allowing for up to 10 percent for recycle streams. A rating of the individual unit processes in the treatment plant and any limitation they may have are summarized in Table 5-2.

Unit Process	Stated Design Criteria	Estimated Capacity*	Current Limitations
Canal turnout: Outlet sump size Bar rack spacing Fine Screen openings	4 ft x 2.5 ft 2.5 in 1/4 in	6 mgd	 Vineyard screen plugs frequently and is a high maintenance item.
Raw Water Pipeline: Diameter Length to Reservoir 1 Length to Reservoir 2 Static head available	16 in 940 ft 1,440 ft 189 ft	7 mgd	• Existing valves and actuators need to be replaced due to old age. Condition of pipeline needs to be confirmed.

Table 5-2: Existing WTP Unit Process Ratings and Limitations

Unit Process	Stated Design Criteria	Estimated Capacity*	Current Limitations
Raw Water Reservoirs: Number Depth. each Volume, each	2 13 ft 3.5 MG	6 mgd	 Outlets are at bottom causing occasional high turbidity events.
In-Plant Piping: Diameters Material Age Range	6-IN – 21-IN Steel, DIP 31-45 years	4 mgd	 Condition of pipelines needs to be confirmed
Clarifiers: Type Number Diameter Side water depth Surface loading rate	Upflow sludge blanket 2 45 ft 15 ft 0.98 gpm/sf	3.6 mgd	• There may be an operational issue with Clarifier #1 during windy conditions.
Filters: Number Diameter Filter Depth Water Depth over Media Area, each Total Area Media: Sand Anthracite Filtration rate (all in service) Filtration rate (1 out of service)	4 18 ft 13.5 ft 6.0 ft 254 sf 1,016 sf 12 in 12 in 2.73 gpm/sf 3.65 gpm/sf	4 mgd	 Difficult to control the filter- to-waste operation. Due to permit requirements associated with Bin 2 for Cryptosporidium, operators must run for over 45 minutes to get the effluent turbidity down to 0.15 NTU. Existing valves and actuators need to be replaced due to old age. Shallow media and filter depth limits capacity to 4 mgd.
Backwash pumps: Number Capacity Motor size, each	2 3,800 gpm 50 hp	4 mgd	• Equipment is over 40 years old and shows age
Air Scour Blowers: Number Capacity Motor size	1 1,000 cfm 25 hp	4 mgd	 Equipment is approaching 30 years old.
Hypochlorite Feed System: Strength Storage tank volume Number of tanks Feed pump capacity Max Cl2 feed rate Maximum total chlorine dose	5.25% 6,500 gal 2 830 gpd 350 lb/d 5 mg/L	6 mgd	 Problems with off-gassing and leakage at joints.
Coagulant Feed System Coagulant Storage tank size Feed pump capacity Max feed rate Maximum alum dose	48% Alum 7,000 gal 830 gpd 4,000 lb/d 80 mg/L	6 mgd	

Unit Process	Stated Design Criteria	Estimated Capacity*	Current Limitations
Polymer Feed System	Alum pumps used for polymer feed	6 mgd	 Separate polymer feed system would improve operations.
Caustic Feed System Strength Storage tank volume Feed pump capacity Max NaOH feed rate Maximum total NaOH dose	25% 4,000 gal 200 gpd 800 lb/d 12 mg/L	6 mgd	
Washwater Reclamation Ponds Number Volume, each Bottom Area, each	2 180,000 gal 1400 sf	2.5 mgd as combined drying beds and WW ponds; 5 mgd as WW Ponds only	 Solids do not dry well in the ponds due to continual backwash water inflows and seepage of groundwater. Larger drying area is needed.

*Based on water quality during summer high demand season and annual sludge generation for washwater ponds.

Based on the capacity limitations described in Table 5-2 and the projected increase in demands, the existing WTP can meet system demands until 2027 provided the following interim improvements are made:

- Improvements to the canal turnout screen
- Addition of new drying beds to relieve the overloaded WW ponds.
- Potentially replacement of BW pumps and blower that may fail prior to 2027.

5.5 WTP Alternatives

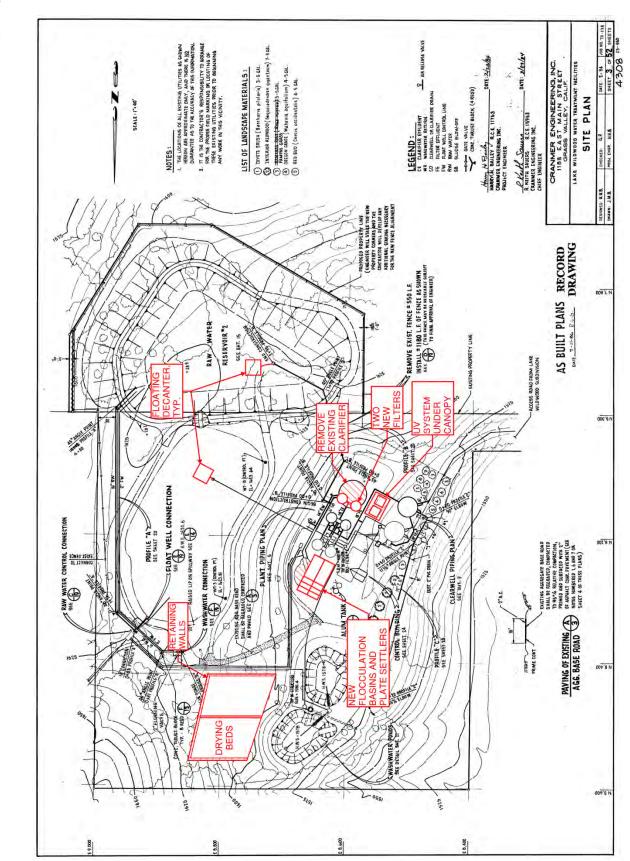
Providing a reliable water supply for the Lake Wildwood service area can be accomplished by several different approaches that either retain the existing treatment plant or involve construction of new treatment units. Alternatives that utilize parts of the existing WTP will require condition assessments to verify the remaining useful life of components underground. The water supply to the Lake Wildwood service area could be entirely from the WTP via the Newtown Canal or a portion of the supply could be provided by a new pipeline from the E. George WTP.

Considering the range of raw water quality and current regulations, a robust treatment system is recommended that can handle raw water turbidity as high as 50 NTU and meet the additional 1.0 log Cryptosporidium inactivation required by the LT2ESWTR Bin 2 requirements.

For the treatment plant only scenario, the capacity of each alternative is up to 5.0 mgd net capacity to meet the high range of projected future demand. For purposes of comparison, adjustments to costs will be made for lesser capacity options on dollar per gallon per day capacity basis. For the options that include water supply from a new pipeline from the E. George WTP, the treatment plant upgrades could be sized for 2.0-2.5 mgd and provide redundancy. In this scenario, one-half of the existing WTP would be upgraded and the remaining system could

FJS

be maintained for backup, as needed. This will allow for continued supply, with less than 30 percent reduction to the Lake Wildwood service area in the event of an interruption in the pipeline supply.

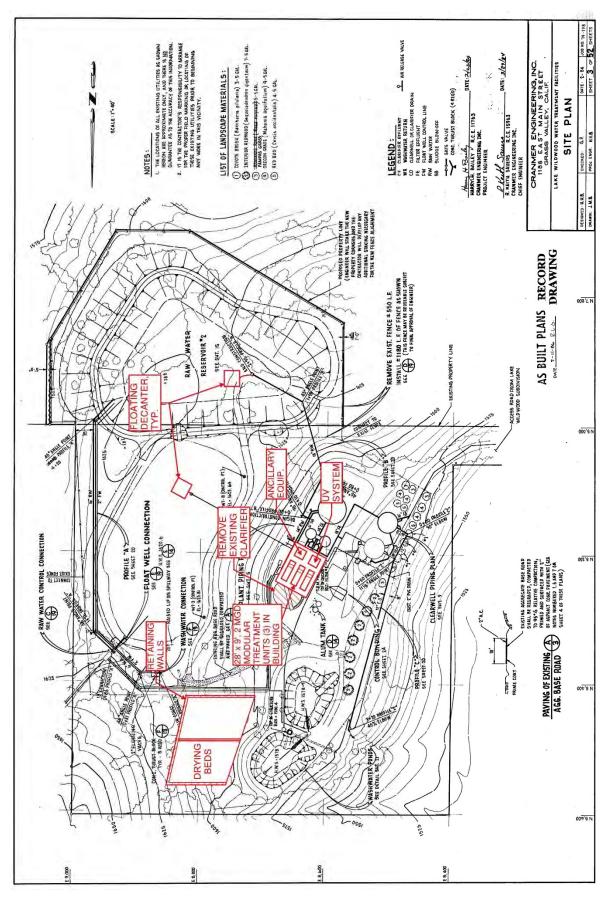
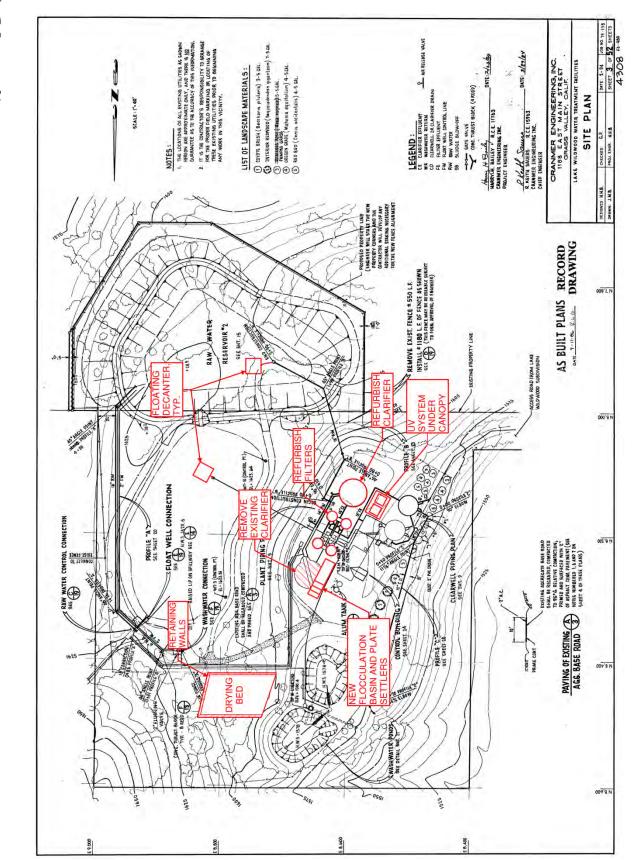

Design criteria for the two treatment plan options are presented in Table 5-3. Calculations for solids generation are presented in Appendix E.

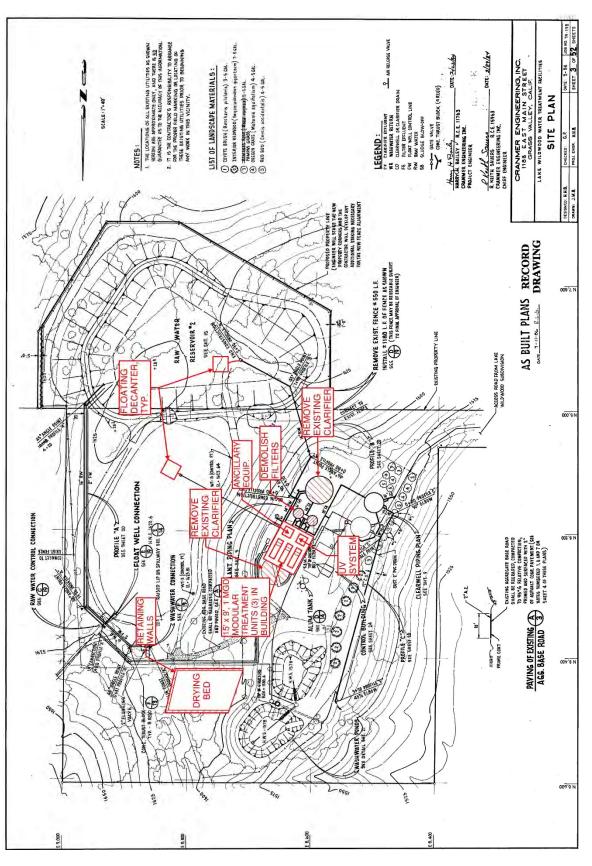
Parameter	Average Summer	Range	Average Winter	Range	LWW WTP Only	LWW WTP and Pipeline
Temperature, °C	22	15-25	7.6	5-10		
Turbidity, NTU	2.5	1.2 - 8.5	9.5	1.8-50		
Total Organic Carbon (TOC), mg/L	1.2	0.9 -1.9	1.3	1.0-1.9		
Alkalinity, mg//L as CaCO₃	21	16-28	30	23-38		
Alum dose, mg/L	18.5	17-20	41	24-73		
Max Day Demand, MGD					5.3	2.6
Average Daily Plant Production, MGD					3.0	1.6*
Calculated Residuals Generated, dry lb/yr					173,200	48,400*

Table 5-3: WTP Alternative Analysis Design Criteria

*During 8 months of year when operating

Based on discussions with NID staff the following alternatives listed in the section below are evaluated and are discussed in more detail. Preliminary layouts of the proposed alternatives are shown in Figure 5-1 through Figure 5-4.


Figure 5-2: Alternative 1-B Modular Treatment Plant

31 | July 20, 2017

July 20, 2017 | 32

- A. UPGRADE AND EXPAND EXISTING TREATMENT SYSTEM DESIGN CAPACITY: 5.5 MGD TOTAL (5.0 MGD NET)
 - Install new self-cleaning raw water screen either at WTP site or at canal. Options include a coanda screen at the intake, a travelling screen at the WTP, or a self-cleaning strainer at the WTP (Figure 5-5).

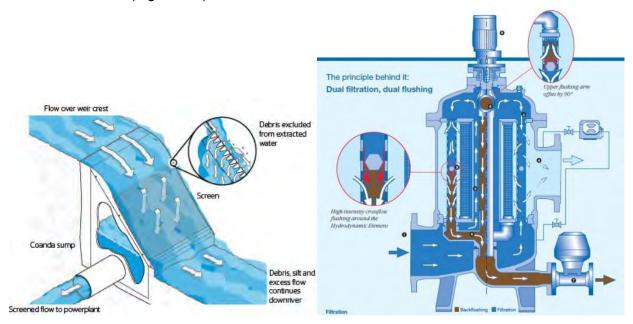


Figure 5-5: Coanda Screen (Left) and an Automatic Self Cleaning Strainer (Right)

- Install floating decanters in Raw Water Reservoirs.
- Replace existing clarifiers with two 2.75 mgd capacity flocculation basins and stainless steel plate settler units in concrete basins.
- Refurbish existing filters with new media and valves, replace backwash pumps and blower.
- Construct two new filters to increase number to 6.
- Construct crossover pipeline to allow settled water from either plate settler to go to all four filters.
- Install new UV disinfection system to treat filter effluent for Cryptosporidium inactivation and some organics reduction with peroxide addition, if needed. Operation with a UV disinfection system would provide greater flexibility in the operation of the filters by relaxing the effluent turbidity standard from 0.15 to 0.3 NTU. An example UV reactor is shown in Figure 5-6.

Figure 5-6: Trojan UV Swift Medium Pressure UV Reactor

- Construct two new soil cement lined solids drying lagoon (10,000 sf total area) in size to reduce loading to existing washwater ponds. The lagoons should be at a higher elevation to prevent groundwater intrusion into the lagoons. Possible locations include: area north of the raw water reservoirs, along the east side of Reservoir 1; or on property to be purchased (to the south of the plant site).
- Condition assessment and replacement of underground and electrical infrastructure as required.
- B. CONSTRUCT NEW MODULAR TREATMENT PLANT DESIGN CAPACITY: 5.5 MGD TOTAL (5.0 MGD NET)
 - Install new raw water screen either at WTP site or at canal as described for Alternative 1-A.
 - Install floating decanters in Raw Water Reservoirs.
 - Replace existing clarifiers and filters with modular treatment units that include adsorption clarifiers (media contact clarifiers) and dual media filters. These systems are rated for raw water turbidities up to 75 NTU. Modular treatment units come in 1.0 or 2.0 mgd increments. To treat 5.5 mgd, three 2.0 mgd units would be needed. Installation of the third unit could be delayed until needed to meet future demands. These units can be placed outdoors or under a canopy (preferred). An example modular unit is shown in Figure 5-7.

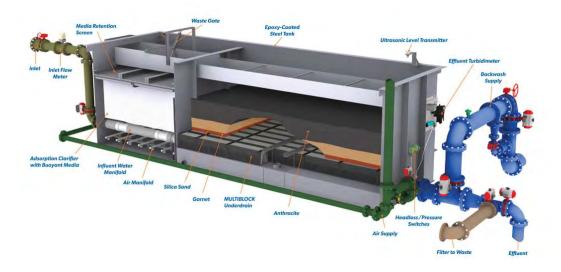


Figure 5-7: Trident Modular Treatment System

F)5

- Install new air scour blowers and backwash pumps sized for the new filtration units.
- Install new UV disinfection system for Cryptosporidium inactivation (see Alternative 1-A).
- Construct two new solids drying lagoons (see Alternative 1-A).

5.5.2 Alternative 2: Future water supply from Combination of LWW WTP and Intertie Pipeline

- A. UPGRADE EXISTING TREATMENT SYSTEM DESIGN CAPACITY: 2.0 -2.5 MGD (NEW UPGRADED CAPACITY) WITH EXISTING TREATMENT TRAIN 2 AS BACK-UP.
 - Install new raw water screen either at WTP site or at canal (see Alternative 1-A).
 - Install floating decanters in Raw Water Reservoirs.
 - Replace existing Plant 1 clarifier with one new 2.75 mgd capacity flocculation basin and stainless steel plate settler unit in a concrete basin.
 - Refurbish existing Plant #2 clarifier.
 - Refurbish existing filters with new media and valves, replace backwash pumps and blower.
 - Install new UV disinfection system for Cryptosporidium inactivation.
 - Construct one new sludge lagoon to help reduce loading to existing ponds.
 - Condition assessment and replacement of underground and electrical infrastructure as required.
- B. CONSTRUCT NEW MODULAR TREATMENT PLANT WITH DESIGN CAPACITY OF 2.0-2.5 MGD
 - Install new raw water screen either at WTP site or at canal (see Alternative 1-A).
 - Install floating decanters in Raw Water Reservoirs.
 - Install three 1.0 mgd new modular treatment units that include adsorption clarifiers (media contact clarifiers) and dual media filters.
 - Demolish existing Plant #2 clarifier and Plant #2 filters.
 - Install new UV disinfection system for Cryptosporidium inactivation.
 - Construct one new sludge lagoon to help reduce loading to existing ponds.

5.6 Evaluation of WTP Alternatives

An alternatives evaluation for each alternative including advantages and disadvantages are presented in Table 5-4.

Alternative	Advantages	Disadvantages
1. Future Water Supply from LWV	V WTP only (5.5 MGD)	
A. Upgrade and Expand Existing Treatment System	 Minimize disruption to the plant site. Flocculation and plate settlers provide better performance than existing clarifiers. UV disinfection will provide greater flexibility in filter operation and reduce the required chlorine dose and DBP formation 	 Depth of the filters and media not ideal requiring a lower design filtration rate. Two new filters are required to increase the plant capacity to 5.5 MGD. Risk that refurbishing of old equipment may be more costly than currently estimated.

Table 5-4: WTP Alternatives Advantages and Disadvantages

Alternative	Advantages	Disadvantages
 B. Construct New Modular Treatment Plant 2. Water supply from combination 	 Small foot print Treatment equipment would be covered by canopy Proven process performance See UV comment above. of LWW WTP (4.0 MGD total) and 	Operators will need to be trained for operating a new system. new pipeline (2.0-2.5 MGD)
A. Upgrade Existing Treatment System	 Having pipeline allows for the plant to shut down during the winter and run at lower capacity during the summer. Having pipeline greatly reduces operation of the plant resulting in much lower annual sludge quantity. Refurbishing the existing Plant 2 clarifier and all the filters reduces impacts and the need for re-training. See UV comment above 	 Depth of the filters not ideal reducing available head for operation. Risk that refurbishing of old equipment may be more costly than currently estimated. Additional treatment for TOC removal at the E. George WTP may be required to meet DBP limits.
B. Construct New Modular Treatment Plant - With Design Capacity of 4.0 mgd	 The modular design and small footprint simplifies construction. Project could be built in 2 phases as demand increases. Proven process performance of modular systems. Having pipeline greatly reduces operation of the plant resulting in much lower annual sludge quantity. See UV comment above 	 Operators will need to be trained for operating a new system. Additional treatment for TOC removal at the E. George WTP may be required to meet DBP limits.

5.6.1 Preliminary Cost Estimates

Preliminary estimates are at a conceptual design level of accuracy and include a 30 percent contingency. The preliminary estimates are included in Appendix B-3. A summary of the costs is presented in Table 5-5.

Alternative	Estimated Cost
Alternative 1-A – Upgrade and Expand Existing Treatment System	\$7,753,000
Alternative 1-B – New Modular Treatment Plant	\$8,561,000
Alternative 2-A – Upgrade Existing Treatment System	\$4,683,000
Alternative 2-B – New Modular Treatment Plant	\$5,383,000

Table 5-5: Summary of Estimated Design and Construction Costs for Each Alternative

5.6.2 Preliminary O&M Estimates

Preliminary estimates for operation and maintenance (O&M) for each alternative where prepared considering the differences in water treated and seasonal plant operation. For alternatives 2-A and 2-B, LWW could be served entirely by the pipeline for approximately six months a year, so the O&M costs at the LWW WTP are reduced. The preliminary estimates are included in Appendix B-4. A summary of the costs is presented in Table 5-6.

Table 5-6: Preliminary O&M Costs for Each Alternative

Alternative	Annual O&M Cost Per 1,000 Gallons	Net Present Value (20 years)
1-A and 1-B WTP Supply Only	\$0.94	\$6,870,000
2-A and 2-B WTP and Pipeline	\$0.94 (LWW), \$0.70 (E George)	\$5,630,000

5.7 Evaluation Results

For the high growth scenario, the estimated maximum day water demand for the Lake Wildwood service area is 4.88 mgd. A design capacity of 5.0 mgd net capacity (5.5 mgd gross capacity) was used for evaluating the treatment plant alternatives.

The raw water turbidity ranges from an average of 2.5 NTU in the summer to as high as 50 NTU during the winger rainy season. TOC levels are typically less than 2.0 mg/L.

A new coanda screen is recommended at the canal turnout to reduce maintenance and prevent possible overtopping of the canal.

For the WTP supply only options, Alternative 1-A, Upgrade and Expand Existing Treatment System has the lowest initial cost, but relies on continued use of the existing filters that would be refurbished plus two new similar filters. Alternative 1-B is 11 percent higher in cost, but includes all new modular treatment units including deeper bed filters. Given the advantages of new treatment equipment, Alternative 1-B is recommended for the treatment plant only scenario.

For the WTP and Pipeline Supply options, Alternative 2-A, Upgrade Existing Treatment System with New Pipeline has the lowest estimated construction cost for the WTP options, but relies on continued use of the existing filters that would be refurbished. Alternative 2-B is 15 percent

higher in cost, but includes all new modular treatment units including deeper bed filters. Given the advantages of new treatment equipment, Alternative 2-B is recommended for the combined smaller treatment plant and pipeline scenario.

In general, great risk is associated with upgrading the existing plant, especially since a condition assessment of underground infrastructure has not been completed. The incremental cost of new modular systems will likely be recovered in lower maintenance costs over the life of the plant.

The difference in treated water costs results in a reduction in O&M when LWW is partially supplied by E. George. The difference in net present value of the O&M costs over 20 years between Alternatives 1 (LWW only) and Alternative 2 (LWW + E. George) is \$1.24M, with Alternative 2 being less due to this reduction in O&M.

6 Comparison of Pipeline and Water Treatment Plant Alternatives

6.1 Summary of Alternatives Compared

Two options were considered: upgrading the treatment plant to support the full future capacity and upgrade the treatment plant to operate in conjunction with the intertie pipeline. The details of these two options have been discussed throughout this section, and are summarized in Table 6-1.

FJS

WTP Upgrade Only	Pipeline & WTP Upgrade
Alternative 1-B	Alternative 2-B, Alignment 2
 Install new self-cleaning raw water screen either at WTP site or at canal. Install floating decanters in Raw Water Reservoirs. Construct one new sludge lagoon to help reduce loading to existing ponds Replace existing clarifiers and filters with three 2.0 mgd modular treatment units that include adsorption clarifiers (media contact clarifiers) and dual media filters. Install new UV disinfection system for Cryptosporidium inactivation 	 Install new raw water screen either at WTP site or at canal. Install floating decanters in Raw Water Reservoirs. Construct one new sludge lagoon to help reduce loading to existing ponds Install three 1.0 mgd new modular treatment units that include adsorption clarifiers (media contact clarifiers) and dual media filters. Demolish existing Plant #2 clarifier and Plant #2 filters. Install new UV disinfection system for Cryptosporidium inactivation Pipeline Alignment 2 with connection points at Penn Valley and at Minnow Way in LWW. Supplying full demand for 6 months of the year. <i>Optional</i> – One hydroelectric power generating unit on pipeline.

Table 6-1: Pipeline and Water Treatment Plant Alternative Summary

6.2 Evaluation of Combined Alternatives

6.2.1 Preliminary Cost Estimate

The summary of the preliminary cost estimates and 20 year net present values are shown in Table 6-2. Detailed cost estimates are provided in Appendix B.

Cost	WTP Upgrade Only (Alternative 1-B)	Intertie Pipeline Only (Alignment 2)	WTP Upgrade & Pipeline (WTP Alt 2-B + Pipeline Alignment 2)
Construction Estimate	\$8,561,000	\$14,523,000	\$19,636,000
LWW WTP O&M Per 1,000 Gallons Treated	\$0.94	n/a	\$0.94
E. George WTP O&M Per 1,000 Gallons Treated	n/a	n/a	\$0.70
Total O&M 20 year NPV	\$6,870,000	n/a	\$5,630,000
Pipeline Reimbursement Policy	n/a	\$3,631,000	\$3,631,000
Total 20 year NPV Cost	\$15,431,000	\$10,892,000	\$21,635,000
Optional			
Hydroelectric Cost Estimate	n/a	\$1,050,000	\$1,050,000
Hydroelectric 20 year NPV Revenue	n/a	\$670,000	\$670,000

Table 6-2: Preliminary Cost Estimates and 20 Year NPV

6.2.2 Advantages and Disadvantages

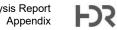
The advantages and disadvantages of both options are provided in Table 6-3.

Table 6-3: Advantages and Disadvantages of WTP Upgrade Only and WTP Upgrade with Intertie Pipeline

Option	Advantages	Disadvantages
WTP Upgrade Only	 Construction limited to WTP Site Lower water age due to proximity of supply Lower capital cost 	 No redundancy for WTP. If WTP fails, LWW tanks are only emergency water storage. Reduced operational flexibility with single source of supply No ability to add additional customers to the system along pipeline alignment
WTP Upgrade & Intertie Pipeline	 Redundancy between WTP and E. George supply WTP can be offline for about 6 months of the year WTP upgrade much easier because plant doesn't need to be online constantly Ability to add additional customers to the system along pipeline alignment Constructed conveyance fees and hydroelectric power generation allows for some repayment over the facilities lifetime 	 Higher capital investment for pipeline and WTP upgrades.

6.3 Recommendations

The recommended alternative is to construct the intertie pipeline along Alignment 2 to connect E. George to the LWW distribution system. As the pipeline is constructed, new customers along the alignment can be connected to the system.


6.3.1 Phasing

Due to the relatively long length of the new pipeline connecting the two water systems, it is not practical to construct in a single dry season. Therefore, it is anticipated the pipeline will be constructed in phases over 4 to 5 years. As the pipeline is constructed, new customer connections can be made, but considerations for water age in the dead-end pipeline will be needed to provide adequate quality water during the phasing period.

Once the pipeline is constructed the effort to upgrade the WTP, consistent with Alternative 2-B, can begin as the system will have a backup supply. This will make the upgrade much easier and cost effective since the WTP will not be required to be in service during the entire upgrade.

Some WTP improvements are recommended prior to the complete upgrade to maintain reliable operation. These include:

- 1. Improvements to the canal turnout screen supplying the raw water ponds.
- 2. Addition of new drying beds to relieve the overloaded WW ponds.
- 3. Evaluation and potential replacement of BW pumps and blower at the WTP.

Appendix A-1: Future Demand Analysis TM HDR - 2016

DETERMINATION OF EXISTING AND FUTURE DEMANDS

Nevada Irrigation District Lake Wildwood Water Treatment Plant Capacity Study and Options Analysis

October 3, 2016

Reviewed by:	Andrew Graham	
Prepared by:	Jeff Lawrence, Sarah Pistorese	

Background

The Nevada Irrigation District (NID) owns and operates the Lake Wildwood (LWW) Water Treatment Plant (WTP) located in Nevada County in northern California. The LWW WTP serves approximately 7,000 customers in a predominately residential area.

A number of factors have influenced population growth and water demands in the LWW area over the last decade. In 2008, economic recession resulted in a slowdown in development and population growth in the region. This region has also experienced prolonged drought conditions in recent years. In 2015, the Governor announced mandatory, temporary water demand reductions due to drought conditions. This resulted in a significant decline in per capita water use. NID recognizes that stagnant growth and low water usage in recent years may be a short-term response to recent drought and the lingering effects of economic recession. Therefore, it is possible that this low level of water usage does not reflect long-term water use trends. It is possible that per capita water use may rebound closer to pre-drought and pre-recession levels once conditions in the region have improved, and the District needs to be prepared to address potential increases in demand.

To plan for uncertainties related to future population and per capita water use, NID selected HDR Inc. to evaluate possible future demand scenarios and the potential for the LWW WTP to reach its firm capacity (3.6 MGD) within the next 20 years (2017 to 2037). This technical memorandum summarizes the methodology and results of that analysis.

Existing Demands

Historic Population and Water Use Trends

Based on data provided by NID, HDR evaluated the historical water use and population growth patterns for the area served by the LWW WTP. This data is summarized in Table 1. Table 1 shows that population remained relatively constant between 2006 and 2014. As discussed, mandatory water demand reductions were implemented in 2015. Due to these unusual circumstances, 2015 was not included in this analysis. In recent years, per capita water use and total water production have decreased. Between 2006 and 2010, the average per capita water use was approximately 175 gallons per capita per day (gpcd). During this period water use was

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

relatively constant. Between 2011 and 2014, the average per capita water use declined to approximately 151 gpcd. As discussed, this decline in water use is largely due to drought conditions and some conservation in recent years.

	2006	2007	2008	2009	2010	2011	2012	2013	2014	Average (2006 – 2014)
Total Population	7,579	7,178	7,194	7,194	7,189	7,173	7,173	7,142	7,103	7,214
Total Production (MG)	482	482	498	449	406	373	415	429	364	433
Per Capita Demand (gpcd)	174	184	190	171	155	142	158	164	140	164

Table 1. Summary of LWW Historic Demand (2006-2014)

Historic Average Day and Maximum Day Demands

The California Code of Regulations (22 CCR § 64554) requires that, "at all times, a public water system's water source(s) have the capacity to meet the system's maximum day demand (MDD)". The CCR defines MDD as "the day with the highest usage in the past ten years". Table 2 summarizes the historic average day demand (ADD) and MDD for the LWW WTP for the past ten years. This data was used to calculate the historic MDD to ADD ratio (i.e. peaking factor).

Table 2 shows that the highest MDD in the past ten years was in 2007 (2.9 million gallons per day (MGD)). This coincides with the highest peaking factor observed in the past ten years (2.2). NID has historically used a peaking factor of 2.5 for future MDD planning purposes. Since the last decade has been impacted by economic recession and drought, NID recognizes that demands could rebound in the future. Therefore, a conservative peaking factor of 2.5 for future MDD planning purposes has been used for this study.

Year	ADD (MGD) ¹	MDD (MGD) ¹	Peaking Factor
2006	1.32	2.81	2.1
2007	1.32	2.94	2.2
2008	1.36	N/A ²	N/A
2009	1.23	2.54	2.1
2010	1.11	2.29	2.1
2011	1.02	2.14	2.1
2012	1.14	2.36	2.1
2013	1.17	2.27	1.9
2014	1.00	2.01	2.0
Annual Average	1.19	2.42	2.1

Table 2.	Summary of	Historic ADD	and MDD

Sources: Annual Reports to the Drinking Water Program and Public Water System Statistics for the LWW WTP

(1) Data based on total water treated at the LWW WTP.

(2) MDD data for 2008 was not available.

FSS

Future Demands

Future Demand Scenarios and Assumptions

As discussed previously, per capita water use was relatively constant prior to drought conditions. In addition, per capita water use for the LWW service area is already low (well below NID's 2020 per capita water use target of 197 gpcd). Therefore, this assessment assumes that per capita water use would remain constant into the future at the 2006 to 2014 average value of 164 gpcd. As such, population growth is assumed to be the primary driver of future water use patterns.

Table 3 summarizes the four scenarios and assumptions used in this analysis. These scenarios represent a range of possible future population growth trends for the LWW service area. It is assumed that the stagnant population growth observed in the last decade may not be a good representation of future conditions. Therefore, in addition to examining historic growth trends, this analysis also examined three alternative growth scenarios. For each scenario, a different growth rate was selected which was used to project future ADDs. The starting ADD for each scenario was assumed to be the ten year annual average value (1.2 MGD) (see Table 2). The MDD for each year was calculated by multiplying the ADD by the peaking factor planning value (2.5).

Scenario	Average Annual Population Growth Rate (%)	Description	Assumptions
Scenario 1: Historic Demand	0	Population will continue to grow at the same rate as observed between 2006 and 2014. Due to economic conditions this rate is uncharacteristically low.	Based on the historic average annual population growth rate (2006 – 2014)
Scenario 2: Low Demand	1.3	Population will grow at a rate lower than the long term historical average.	Based on the low average annual growth rate estimated in the 2015 NID Urban Water Management Plan (2016).
Scenario 3: High Demand	2.4	Population will grow at a rate higher than the long term historical average.	Based on the high average annual growth rate estimated in the 2015 NID Urban Water Management Plan (2016).
Scenario 4: Full Build-out	3.0	Implementation of all proposed developments in the LWW service area (including Penn Valley) within the next twenty years (2017-2037) (see Table 4).	Includes the proposed developments identified in the <i>Penn Valley Fire Flow</i> <i>Analysis</i> technical memorandum (2015). Other proposed developments in the LWW area were provided by the Nevada County Planning Department (Attachment A).

Table 3. Summary of Future Demand Scenarios

It should be noted that the high growth scenario represents developments in excess of those identified in the current general plan. Scenario 4 assumes that all available land and proposed developments are implemented, as identified in the current general plan. Table 4 summarizes the number of new units and associated demand expected at full build-out under Scenario 4. These proposed new developments are estimated to increase ADD by approximately 0.48 MGD at full build-out. For this assessment, it was assumed that the new developments would be implemented evenly over the 20-year period, such that an additional 0.02 MGD of demand is added each year.

	Units	gpd/unit	ADD (MGD)	
Lake Wildwood Residential ^a	1,009 DU	300 °	0.30	
	Penn Valley Area	a ^b		
Residential	400 DU	300	0.12	
Mobile Home	140 DU	250	0.04	
Commercial	39,000 sf	0.50	0.02	
Total Build-Out Demand			0.48	

Table 4. Scenario 4 – Estimated ADD from Future Developments

DU = Dwelling Units, sf = square feet

a. Source: Nevada County Planning Department (see Attachment A)

b. Source: Penn Valley Fire Flow Analysis Technical Memorandum (2015)

c. Water use per residential unit was assumed to be 300 gallons per day per unit, consistent with the assumptions in the *Penn Valley Fire Flow Analysis* Technical Memorandum (2015).

Future Demand Assessment Results

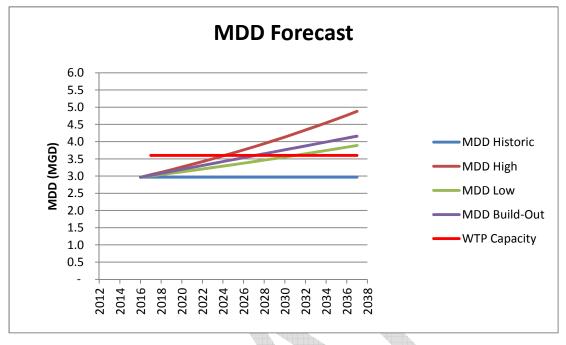

Table 5 summarizes the ADD and MDD results for each future demand scenario. The capacity of the LWW WTP is approximately 3.6 MGD of supply capacity (about 10% of the 4.0 MGD capacity is needed for process water). Under Scenario 1, MDD is still within the capacity of the LWW WTP by 2037. Under Scenarios 2, 3, and 4, demands exceed the capacity of the LWW WTP prior to 2037. Figure 1 illustrates the demand scenarios.

Table 5. Future ADD and MDD 10- and 20-year Forecast				
Scenario 1: Historic	2017	2027	2037	
ADD (MGD)	1.19	1.19	1.19	
MDD (MGD)	2.97	2.97	2.97	
Scenario 2: Low				
ADD (MGD)	1.20	1.37	1.56	
MDD (MGD)	3.00	3.42	3.89	
Scenario 3: High				
ADD (MGD)	1.21	1.54	1.95	
MDD (MGD)	3.04	3.85	4.88	
Scenario 4: Build-Out	_			
ADD (MGD)	1.21	1.44	1.66	
MDD (MGD)	3.02	3.59	4.16	

Table 5. Future ADD and MDD 10- and 20-year Forecast

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

Figure 1. Future MDD Forecast

Table 6 summarizes the year that the MDD for each scenario would exceed the capacity of the LWW WTP. This table suggests that MDD could exceed the capacity of the LWW WTP within approximately 8 to 20 years.

Scenario	Year MDD Exceeds LWW WTP Capacity		
Scenario 1: Historic	Not Exceeded by 2037		
Scenario 2: Low	2031		
Scenario 3: High	2024		
Scenario 4: Build-Out	2027		

Table 6. Future Demand Timeframe to Exceed LWW WTP Capacity

Limitations on Potential New Developments

New developments have the potential to significantly increase demand on the water system. This assessment assumed that the full 0.48 MGD of new development demand would be gradually introduced over the 20 year period. However, often new developments are implemented in blocks, such that a sudden increase in demands could be experienced.

Table 7 shows that the WTP capacity would be exceeded if approximately 0.25 MGD of ADD from new developments were added to the system. This would result in a MDD of 3.6 MGD. Therefore, it is recommended that NID expand the LWW WTP prior to approving new

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630 Telephone (916) 817-4700

developments that could exceed an ADD of approximately 0.25 MGD. This would be equivalent to approximately 820 new residential dwelling unit connections. As shown in Table 4, approximately 1,400 new residential developments are proposed for the LWW and Penn Valley areas. This residential development is in addition to the existing mobile home (currently served by a well) and commercial developments shown in Table 4.

	ADD (MGD)	MDD (MGD)		
Existing Demand (2006-2014 Average)	1.19	2.97		
Additional Build-out Demand to Reach WTP Capacity ¹	0.25	0.63		
Total Allowable Demand Given WTP Capacity (3.6 MGD) 1.44 3				
(1) Scenario 4 assumes that all proposed developments are implemented. Full build-out of proposed developments would result in an additional 0.48 MGD of ADD. This would result in a MDD of 4.16 MGD, which exceeds the capacity of the LWW WTP.				

Table 7. Limitations on Proposed Future Developments

It should be noted that this analysis assumes a constant per capita water use over time. As discussed, the 2006 to 2014 average value of 164 gpcd was used in all four scenarios. In reality, per capita water use is a dynamic variable. Over the long term, this variable can be influenced by trends in temperature and precipitation, changes in state policies, local demand-management programs, land development practices, and landscaping choices made by NID customers. The recent state-wide drought and associated policies, news coverage, and changes in public opinion may also affect per capita use in the coming years, but these effects cannot be predicted with certainty. Therefore, it is recommended that NID continue to monitor per capita water use rates closely and periodically evaluate if actual per capita water use varies significantly from the value used in this water demand forecast.

Telephone (916) 817-4700

References

Nevada Irrigation District. 2015. *Final Technical memorandum: Penn Valley Fire Flow Analysis Project*. Table 3. Prepared by IDModeling, Inc. for Nevada Irrigation District. July, 2015.

Nevada Irrigation District. 2016. 201 5 Urban Water Management Plan. Table 2-3. Prepared by Brown and Caldwell for Nevada Irrigation District. June, 2016.

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

www.hdrinc.com

Telephone (916) 817-4700

Attachment A

Nevada County provided the following data to support the estimate of build-out in the Lake Wildwood area.

Potential Lots/Units	Zoning	
1	R1-PD	Legend:
1	IDR-R1-PD	R1= Residential
1	IDR-R1-PD	PD = Planned Development
1	IDR-R1-PD	IDR = Interim Development Reserve
1	IDR-R1-PD	C1=commercial
1	IDR-R1-PD	OS=Open Space
1	IDR-R1-PD	
1	R1-PD	
1	R1-PD	
1	IDR-R1-PD	
1	R1-PD	
1	IDR-R1-PD	

Lake Wildwood Sanitation District Unimproved Estimated Build-Out Potential

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

Technical Memorandum

Potential Lots/Units	Zoning
1	R1-PD
1	IDR-R1-PD
1	R1-PD
1	IDR-R1-PD
1	R1-PD
1	IDR-R1-PD
1	IDR-R1-PD
1	R1-PD
1	IDR-R1-PD
1	R1-PD
1	IDR-R1-PD
1	R1-PD

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

Technical Memorandum

Potential Lots/Units	Zoning
1	R1-PD
1	IDR-R1-PD
1	IDR-R1-PD
1	R1-PD
1	R1-PD
1	IDR-R1-PD
1	IDR-R1-PD
1	R1-PD
1	IDR-R1-PD
1	R1-PD
1	IDR-R1-PD
1	R1-PD

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

Technical Memorandum

Potential Lots/Units	Zoning							
1	R1-PD-SP							
1	R1-PD							
1	R1-PD							
1	R1-PD							
1	R1-PD							
1	IDR-R1-PD							
1	R1-PD							
1	R1-PD							
1	R1-PD							
1	IDR-R1-PD							
1	R1-PD							
1	R1-PD							
1	R1-PD							
1	R1-PD							
1	R1-PD							
1	R1-PD							
2	R1-PD							
2	R1-PD							
2	R1-PD							
2	IDR-R1-PD							
2	R1-PD R1-PD							
2								
2	R1-PD							
2	R1-PD							
2	IDR-R1-PD							
2	R1-PD							
2	R1-PD							
2	IDR-R1-PD							
2	R1-PD							
2	IDR-R1-PD							
2	IDR-R1-PD							
2	R1-PD							
2	R1-PD							
2	R1-PD							
2	IDR-R1-PD							
2	R1-PD							
2	IDR-R1-PD							
2	IDR-R1-PD							

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

Technical Memorandum

Potential Lots/Units	Zoning
2	R1-PD
2	R1-PD
2	R1-PD
2	R1-PD-SP
2	R1-PD
2	R1-PD-SP
2	R1-PD
2	IDR-R1-PD
3	R1-PD-SP
3	R1-PD
3	R1-PD
4	R1-PD
5	R1-PD
8	IDR-R1-PD
8	C1
9	R1-PD
100*	R1-PD
671*	R1-PD,OS,OS,OS
1,009 (626)*	

* Site is "Wildwood Ridge" Development which was approved for 388 residential units (1,009-771=238+388=626)

HDR Engineering, Inc.

2365 Iron Point Road, Suite 300 Folsom, CA 95630

Appendix A-2: Demand Analysis Data and Calculations

Nevada Irrigation District - Lake Wildwood Water Treatment Plant Historic Water Demand Summary Table

•	•											
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2015 Average (2006-2015	Avg (2006-2014)
Total Population	7,579	7,178	7,194	7,194	7,189	7,173	7,173	7,142	7,103	8,969	7,389	7,214
Total Production (MG)	482	482	498	449	406	373	415	429	364	310	421	433
Per Capita Demand (gpcd)	174	184	190	171	155	142	158	164	140	95	157	164
Total Production =ADD (MGD)	1.32	1.32	1.36	1.23	1.11	1.02	1.14	1.17	1.00	0.85	1.15	1.19
ADD (MGD)	1.32	1.32	1.36	1.23	1.11	1.02	1.14	1.17	1.00	0.85	1.15	1.19
												1.19

Reference Data:

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Annual Average	Avg (2006-2014)
Total Population	7,579	7,178	7,194	7,194	7,189	7,173	7,173	7,142	7,103	8,969	7,389	
Total Active Connections	3,158	3,176	3,184	3,183	3,181	3,174	3,174	3,160	3,143	3,188	3,172	3,170
Total Consumption (MG)	452	452	468	419	385	356	410	393	337	287	396	
Total Production (MG)	482	482	498	449	406	373	415	429	364	310	421	
Total Consumption (MGD)	1.24	1.24	1.28	1.15	1.05	0.98	1.12	1.08	0.92	0.79	-	
Annual Average (gpapd)	418	416	429	386	350	322	358	372	318	267	363	374
Annual Average (gpcd)	163	173	178	160	147	136	157	151	130	88	148	
Total Production (MGD)	1.32	1.32	1.36	1.23	1.11	1.02	1.14	1.17	1.00	0.85	1.15	
DSL	6%	6%9	%9	7%	5%	4%	1%	8%	7%	8%	6%	
Adjusted for DSL (gpapd)	418	416	429	386	350	322	358	372	318	267	363	
Adjusted for DSL (gpcd)	174	184	190	171	155	142	158	164	140	95	157	

-2.7% -2.1% -0.1%

1.8% -3.6% -4.6% 0.1%

Population growth rate Production growth rate gpcd growth rate Connection growth rate

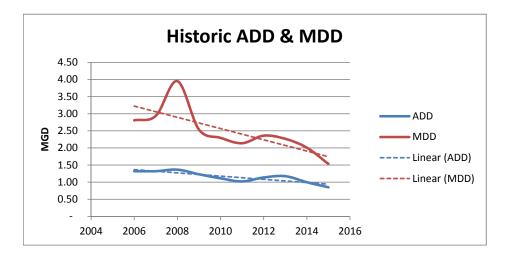
-0.7%

2006-2015 2006-2014

Ś
5
÷
28
- iii
5
ഗ
- P
_ ≥
5
പ്
0

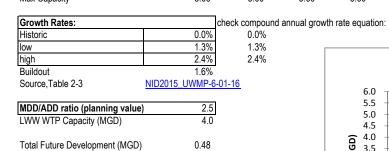
	365	1,000,000	0.001	197 gpcd <u>NID2015_UWMP-6-01-16</u>
Conversion Factors	Days/year	gal to MG	ccf to MG	NID gpcd 2020 target: Source:

Nevada Irrigation District - Lake Wildwood Water Treatment Plant Historic Average Day and Max Day Demand ADD, MDD, PHD (MGD)

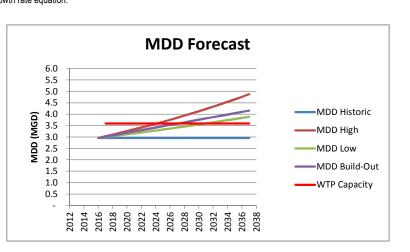

ADD, 18100, PHD (1816)	0)			
Year	ADD	MDD	Peaking Factor	
2006	1.32	2.81	2.1	
2007	1.32	2.94	2.2	
2008	1.36	3.95	2.9	Note: 2008 MDD not included in analysis, since there was an error in this data
2009	1.23	2.54	2.1	
2010	1.11	2.29	2.1	
2011	1.02	2.14	2.1	
2012	1.14	2.36	2.1	
2013	1.17	2.27	1.9	
2014	1.00	2.01	2.0	
2015	0.85	1.53	1.8	Note: 2015 Not included in analysis, since 2015 was an abnormal year
Annual Average	1 19	2 4 2	21	7

 Annual Average
 1.19
 2.42
 2.1

 Values based on water production at the LWW WTP, not consumption. This


Source: LWW Annual Reports

Lake Wildwood Max Days-Months



Nevada Irrigation District - Lake Wildwood Water Treatment Plant Future Demand Scenarios 2006-2015 Avg

Future Demand Scenarios	32000-2013 AVy																					
Scenario 1: Historic	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
ADD (MGD) (2006-2014 avg)	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
MDD (MGD)	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97
Population	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214	7,214
Water Use (ADD)	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
Connections	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170	3,170
Water Use (ADD)	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
Water Use (MDD)	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97
Scenario 3: High																						
ADD (MGD)	1.19	1.21	1.24	1.27	1.30	1.34	1.37	1.40	1.43	1.47	1.50	1.54	1.58	1.61	1.65	1.69	1.73	1.78	1.82	1.86	1.91	1.95
MDD (MGD)	2.97	3.04	3.11	3.18	3.26	3.34	3.42	3.50	3.59	3.67	3.76	3.85	3.94	4.04	4.13	4.23	4.33	4.44	4.55	4.65	4.77	4.88
Scenario 2: Low																						
ADD (MGD)	1.19	1.20	1.22	1.23	1.25	1.27	1.28	1.30	1.32	1.33	1.35	1.37	1.39	1.40	1.42	1.44	1.46	1.48	1.50	1.52	1.54	1.56
MDD (MGD)	2.97	3.00	3.04	3.08	3.12	3.16	3.20	3.25	3.29	3.33	3.37	3.42	3.46	3.51	3.55	3.60	3.65	3.69	3.74	3.79	3.84	3.89
Scenario 4: Build-Out (includes	s PV & LWW Future De	evelopments)																				
ADD (MGD)	1.19	1.21	1.23	1.25	1.28	1.30	1.32	1.35	1.37	1.39	1.41	1.44	1.46	1.48	1.50	1.53	1.55	1.57	1.60	1.62	1.64	1.66
MDD (MGD)	2.97	3.02	3.08	3.14	3.19	3.25	3.31	3.36	3.42	3.48	3.53	3.59	3.65	3.70	3.76	3.82	3.88	3.93	3.99	4.05	4.10	4.16
Now Dovelonment		0.02	0.05	0.07	0.00	0.11	0.14	0.16	0.10	0.20	0.02	0.25	0.07	0.20	0.20	0.24	0.26	0.20	0.41	0.42	0.45	0.48
New Development	2.00	0.02	0.05	0.07	0.09	0.11	0.14		0.18		0.23		0.27	0.30	0.32	0.34	0.36	0.39	0.41	0.43		
Max Capacity	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60

0.02

Summary Table

Annual Development (MGD)

Scenario 1: Historic	2017	2027	2037
ADD (MGD)	1.19	1.19	1.19
MDD (MGD)	2.97	2.97	2.97
Scenario 2: Low			
ADD (MGD)	1.20	1.37	1.56
MDD (MGD)	3.00	3.42	3.89
Scenario 3: High			
ADD (MGD)	1.21	1.54	1.95
MDD (MGD)	3.04	3.85	4.88
Scenario 4: Build-Out			
ADD (MGD)	1.21	1.44	1.66
MDD (MGD)	3.02	3.59	4.16

	ADD (MGD)	MDD (MGD)
Existing Demand (2006-2014 Ave	1.19	2.97
Additional Build-out Demand to Re	0.41	1.02
Total WTP Capacity	1.60	3.99
Full Build-Out Demand	0.48	1.19
	1.66	4.16

(1) Full build-out would result in an additional 0.48 MGD of ADD. This would result in a MDD of 4.16 MGD, which exceeds the capcity of the LWW WTP.

Development trigger = 0.41 MGD Equivalent all 1,363.92

Appendix B-1: Alternative Alignment Construction Costs

Alternative Alignments Comparative Costs

Description of Alignment	Factor
Overland construction, flat terrain	1
Pipe supported on bridge	3
Pipe support structure	5
Pavement demo and restoration (add)	0.25
Pavement addition (add)	0.15
Extra rock, flat ground (add)	0.5
Light traffic (add)	0.1
Heavy traffic (add)	0.2
Clearing and grubbing off road areas (add)	1.5

Cost Estimate Key		
Easement Costs / SF	4	\$/SF
Pipeline Diameter	12	inch
Easement Width	15	Feet

Summary	
Alignment	Total Cost
1	\$ 12,642,000
2	\$ 10,808,000
3	\$ 11,240,000
4	\$ 11,177,000

Alignment 1

			Constructibility						Easement	Easement	Easeme	nt
Section	Base C	ost	Factor	Weighted CF	Unit C	Cost	Length (ft)	Construction Cost	Required	Footage	Costs	
Bitney Springs Rd, Pleasant Valley Rd	\$	180.00	1.45	1.33	\$	261.00	42645.5	\$ 11,130,475.50	No	0		
Bridge Crossing, supported on bridge	\$	180.00	3.2	0.01	\$	576.00	200	\$ 115,200.00	No	0		
Areas without Road to WTP	\$	180.00	2.5	0.09	\$	450.00	1700	\$ 765,000.00	Yes	1700	\$ 1	102,000
Unpaved road to WTP	\$	180.00	1.15	0.05	\$	207.00	1981.5	\$ 410,170.50	Yes	1981.5	\$ 1	118,890
Total				1.34			46527	\$ 12,420,846.00		3681.5	\$ 2	220,890

Alignment 2

			Adjustment						Easement	Easement	Easen	nent
Section	Base Cost		Factor	Weighted CF	U	nit Cost	Length (ft)	Construction Cost	Required	Footage	Costs	
Rough and Ready Highway to Penn Valley Dr	\$ 18	0.00	1.45	0.86	\$	261.00	24125	\$ 6,296,625.00	No	0		
Rough and Ready Road up to Riffle Box Rd	\$ 18	0.00	1.35	0.31	\$	243.00	9268	\$ 2,252,075.40	No	0		
Non-County Maintained Road	\$ 18	0.00	1.15	0.13	\$	207.00	4600	\$ 952,200.00	Yes	4600	\$	276,000
Areas without Road	\$ 18	0.00	2.5	0.06	\$	450.00	897	\$ 403,650.00	Yes	897	\$	53,820
Bridge Crossing on Penn Valley Dr	\$ 18	0.00	5.2	0.01	\$	936.00	100	\$ 93,600.00	Yes	100	\$	6,000
Rocky Area on Rough and Ready Hwy	\$ 18	0.00	1.55	0.06	\$	279.00	1700	\$ 474,300.00	No	0		
Total				1.43			40690	\$ 10,472,450.40		5597	\$	335,820

Alignment 3

			Constructibility					Easement	Easement	Easeme	ent
Section	Base Cos	st	Factor	Weighted CF	Unit Cost	Length (ft)	Construction Cost	Required	Footage	Costs	
Rough and Ready Highway to Penn Valley Dr	\$	180.00	1.45	0.86	\$ 261.0	24125	\$ 6,296,625.00	No	0		
Cook Road to Dolomite Ct	\$	180.00	1.35	0.14	\$ 243.0	4230	\$ 1,027,890.00	No	0		
Non-County Maintained Road	\$	180.00	1.15	0.18	\$ 207.0	6359	\$ 1,316,313.00	Yes	6359	\$ 3	381,540
Areas without Road	\$	180.00	2.5	0.19	\$ 450.0	3106	\$ 1,397,700.00	Yes	3106	\$ 1	186,360
Bridge Crossing on Cook Rd	\$	180.00	5.2	0.01	\$ 936.0	60	\$ 56,160.00	Yes	60	\$	3,600
Bridge Crossing on Penn Valley Dr	\$	180.00	5.2	0.01	\$ 936.0	100	\$ 93,600.00	Yes	100	\$	6,000
Rocky Area on Rough and Ready Hwy	\$	180.00	1.55	0.06	\$ 279.0	1700	\$ 474,300.00	No	0		
Total				1.46		39680	\$ 10,662,588.00		9625	\$ 5	577,500

Alignment 4

			Constructibility					Easement	Easement	Easem	ient
Section	Base (Cost	Factor	Weighted CF	Unit Cost	Length (ft)	Construction Cost	Required	Footage	Costs	
Rough and Ready Highway to Penn Valley Dr	\$	180.00	1.45	0.86	\$ 261.00	24125	\$ 6,296,625.00	No	0		
Valley Dr.	\$	180.00	1.35	0.12	\$ 243.00	3607	\$ 876,501.00	No	0		
Non-County Maintained Road	\$	180.00	1.15	0.19	\$ 207.00	6637	\$ 1,373,941.80	Yes	6637.4	\$	398,244
Areas without Road	\$	180.00	2.5	0.20	\$ 450.00	3251	\$ 1,462,770.00	Yes	3250.6	\$	195,036
Bridge Crossing on Penn Valley Dr	\$	180.00	5.2	0.01	\$ 936.00	100	\$ 93,600.00	Yes	100	\$	6,000
Rocky Area on Rough and Ready Hwy	\$	180.00	1.55	0.06	\$ 279.00	1700	\$ 474,300.00	No	0		
Total				1.44		39420	\$ 10,577,737.80		9988	\$	599,280

Appendix B-2: Hydroelectric Unit Cost Estimates

			Option 1-1			Opti	Option 1-2		Option 2-1		Option 2-2	
	Quantity	Unit	Unit Price	Extended	Quantity	Unit	Unit Price	Extended	Quantity Unit Unit Price E	Extended	Quantity Unit Unit Price	Extended
Turbine-generator	150	kW	\$ 1,250	\$ 187,500	410	kW	\$ 1,250	1,250 \$ 512,500	180 kW \$ 1,250 \$ 225,000	225,000	310 kW \$ 1,250	\$ 387,500
Switchgear	-	LS	\$ 100,000	\$ 100,000	с	LS	\$ 100,000	\$ 300,000	1 LS \$ 100,000 \$	100,000	3 LS \$ 100,000	\$ 300,000
Powerhouse (20'x30')												
Concrete (foundation, tailrace)	50	ç	\$ 1,000	\$ 50,000	150	C∖	\$ 1,000	ф	50 CY \$ 1,000 \$	50,000	150 CY \$ 1,000	\$ 150,000
Structure (CMU)	-	LS	\$ 75,000	\$ 75,000	ю	LS	\$ 75,000	ф	1 LS \$ 75,000 \$	75,000	3 LS \$ 75,000	6
Roof (trusses, metal roofing)	-	LS	\$ 15,000	\$ 15,000	с	S	\$ 15,000	θ	1 LS \$ 15,000 \$	15,000	3 LS \$ 15,000	\$ 45,000
Electrical (lighting, fans, station service)	-	LS	\$ 75,000	\$ 75,000	с	R	\$ 75,000	\$ 225,000	1 LS \$ 75,000 \$	75,000	3 LS \$ 75,000	\$ 225,000
Transformer (480V/12.47)	150	kVA	\$	\$ 7,500	410	kva	\$ 50	\$ 20,500	180 kVA \$ 50 \$	9,000	310 kVA \$ 50	\$ 15,500
SCADA/Communications	-	LS	\$ 75,000	\$ 75,000	ю	S	\$ 75,000 \$	\$ 225,000	1 LS \$ 75,000 \$	75,000	3 LS \$ 75,000 \$	\$ 225,000
Transmission/interconnection	1	LS	\$ 100,000	\$ 100,000	3	LS	\$ 100,000	\$ 300,000	1 LS \$ 100,000 \$	100,000	3 LS \$ 100,000	\$ 300,000
Subtotal				\$ 685,000				\$2,003,000	\$	724,000		\$ 1,873,000
Engineering			15%	\$ 110,000			15%	15% \$ 310,000	15% \$	110,000	15%	15% \$ 290,000
Contingency			30% \$	\$ 210,000			30%	30% \$ 610,000	30% \$	220,000	30% \$	\$ 570,000
Total (rounded)				\$ 1,010,000				\$2,920,000	\$1	\$ 1,050,000		\$2,730,000

Option 4	2 Units	350	1.45	130 (x 2)	\$ 2,920,000	\$4,080,000	1.40
Opti	1 Unit	230	2.9	180	\$ 1,050,000	\$670,000	0.64
on 3	2 Units	350	1.45	130 (x 2)	\$2,940,000	\$4,150,000	1.41
Option 3	1 Unit	230	2.9	180	\$ 1,050,000	\$670,000	0.64
tts 2-4	2 Units	350	1.45	130 (x 2)	\$2	\$1,340,000	0.49
Alignments 2-4	1 Unit	230	2.9	180	1,050,000	\$670,000	0.64
nent 1	2 Units	350	1.45	130 (x 2)	\$ 2,920,000 \$	\$1,930,000	0.66
Alignment 1	1 Unit	194	2.9	150	\$ 1,010,000	\$510,000	0.50
		Head Available (psi)	Flow (MGD)	Generator Size (kW)	Capital Cost \$1,010,000 \$ 2,920,000	NPV of 22-year Revenue	B/C

]			Option	1-1			C	ption 1	-2			0	otion 2-1			0	ption 2-2			0	otion 3			0	ption 4
	Quantity	Unit	ι	Jnit Price	Extended	Quantity	Unit	U	Jnit Price E	Extended	Quantity	Unit	Unit Price	Extended	Quantity	Unit	Unit Price	Extended	Quantity	Unit	Unit Pri	ce Extended	Quantity	Unit	Unit Price Extended
Turbine-generator	200	kW	\$	1,250 \$	250,000	260	kW	\$	1,250 \$	325,000	200	kW	\$ 1,250	\$ 250,000	260	kW	\$ 1,250	\$ 325,000	210	kW	\$ 1,2	250 \$ 262,50	0 260	kW	\$ 1,250 \$ 325,000
Switchgear	1	LS	\$	100,000 \$	100,000	2	LS	\$	100,000 \$	200,000	1	LS	\$ 100,000	\$ 100,000	2	LS	\$ 100,000	\$ 200,000	1	LS	\$ 100,0	000 \$ 100,00	0 1	LS	\$ 100,000 \$ 100,000
Powerhouse (20'x30')																									
Concrete (foundation, tailrace)	50	CY	\$	1,000 \$	50,000	100	CY	\$	1,000 \$	100,000	50	CY	\$ 1,000	\$ 50,000	100	CY	\$ 1,000	\$ 100,000	50	CY	\$ 1,0	000 \$ 50,00	0 50	CY	\$ 1,000 \$ 50,000
Structure (CMU)	1	LS	\$	75,000 \$	75,000	2	LS	\$	75,000 \$	150,000	1	LS	\$ 75,000	\$ 75,000	2	LS	\$ 75,000	\$ 150,000	1	LS	\$ 75,0	000 \$ 75,00	0 1	LS	\$ 75,000 \$ 75,000
Roof (trusses, metal roofing)	1	LS	\$	15,000 \$	15,000	2	LS	\$	15,000 \$	30,000	1	LS	\$ 15,000	\$ 15,000	2	LS	\$ 15,000	\$ 30,000	1	LS	\$ 15,0	000 \$ 15,00	0 1	LS	\$ 15,000 \$ 15,000
Electrical (lighting, fans, station service)	1	LS	\$	75,000 \$	75,000	2	LS	\$	75,000 \$	150,000	1	LS	\$ 75,000	\$ 75,000	2	LS	\$ 75,000	\$ 150,000	1	LS	\$ 75,0	000 \$ 75,00	0 1	LS	\$ 75,000 \$ 75,000
Transformer (480V/12.47)	200	kVA	\$	50 \$	10,000	260	kVA	\$	50 \$	13,000	200	kVA	\$ 50	\$ 10,000	260	kVA	\$ 50	\$ 13,000	210	kVA	\$	50 \$ 10,50	0 260	kVA	\$ 50 \$ 13,000
SCADA/Communications	1	LS	\$	75,000 \$	75,000	2	LS	\$	75,000 \$	150,000	1	LS	\$ 75,000	\$ 75,000	2	LS	\$ 75,000	\$ 150,000	1	LS	\$ 75,0	000 \$ 75,00	0 1	LS	\$ 75,000 \$ 75,000
Transmission/interconnection	1	LS	\$	100,000 \$	100,000	2	LS	\$	100,000 \$	200,000	1	LS	\$ 100,000	\$ 100,000	2	LS	\$ 100,000	\$ 200,000	1	LS	\$ 100,0	000 \$ 100,00	0 1	LS	\$ 100,000 \$ 100,000
Subtotal				9	750,000				\$ ´	1,318,000				\$ 750,000				\$ 1,318,000				\$ 763,00	0		\$ 828,000
Engineering				15% \$	120,000				15% \$	200,000			15%	\$ 120,000			15%	\$ 200,000				15% \$ 120,00	0		15% \$ 130,000
Contingency				30% \$	230,000				30% \$	400,000			30%	\$ 230,000			30%	\$ 400,000			:	30% \$ 230,00	0		30% \$ 250,000
Total (rounded)				\$	5 1,100,000				\$ 1	1,920,000				\$ 1,100,000				\$ 1,920,000				\$ 1,110,00	0		\$ 1,210,000

Turbine Sizing (example)		
Q	2.9	MGD
Н	276	psi
W2W efficiency	0.85	
kW	207	

Economic Parame	ters	
Base rate (/kWh)	\$	0.0892
Escalation		4.00%
Inflation		2.00%
Discount		4.00%
O&M	\$	18,000

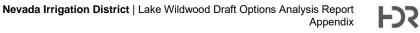
	Future Water St	upply																				
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Total Supply																						•
ADD (MGD)	1.19	1.21	1.23	1.25	1.28	1.30	1.32	1.35	1.37	1.39	1.41	1.44	1.46	1.48	1.50	1.53	1.55	1.57	1.60	1.62	1.64	1.66
MDD (MGD)	2.97	3.02	3.08	3.14	3.19	3.25	3.31	3.36	3.42	3.48	3.53	3.59	3.65	3.70	3.76	3.82	3.88	3.93	3.99	4.05	4.10	4.16
Flow in New Pipeline																						
ADD (MGD)	0.83	0.85	0.86	0.88	0.89	0.91	0.93	0.94	0.96	0.97	0.99	1.01	1.02	1.04	1.05	1.07	1.09	1.10	1.12	1.13	1.15	1.17
MDD (MGD)	2.08	2.12	2.16	2.20	2.24	2.28	2.32	2.36	2.40	2.44	2.48	2.52	2.56	2.60	2.63	2.67	2.71	2.75	2.79	2.83	2.87	2.91
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Annual Energy, MWh	516	526	536	546	556	566	575	585	595	605	615	625	635	645	655	664	674	684	694	704	714	724
Rate	\$ 0.0892 \$	0.0928 \$	0.0965 \$	0.1004 \$	0.1044 \$	0.1086 \$	0.1129 \$	0.1174	\$ 0.1221	\$ 0.1270 \$	0.1321	0.1374	\$ 0.1429	\$ 0.1486 \$	0.1545 \$	0.1607 \$	0.1671	\$ 0.1738 \$	0.1808 \$	0.1880 \$	0.1955 \$	0.2033
Revenue	\$ 46,053 \$	48,813 \$	51,720 \$	54,782 \$	58,005 \$	61,399 \$	64,972 \$	68,732	\$ 72,689	\$ 76,853 \$	81,233	85,841	\$ 90,687	\$ 95,784 \$	101,144 \$	106,779 \$	112,703	\$ 118,930 \$	125,474 \$	132,353 \$	139,580 \$	147,175
Expenses	\$ (18,000) \$	(18,360) \$	(18,727) \$	(19,102) \$	(19,484) \$	(19,873) \$	(20,271) \$	(20,676)	\$ (21,090)	\$ (21,512) \$	(21,942) \$	(22,381)	\$ (22,828)	\$ (23,285) \$	(23,751) \$	(24,226) \$	(24,710)	\$ (25,204) \$	(25,708) \$	(26,223) \$	(26,747) \$	(27,282)
Net Revenue	\$ 28,053 \$	30,453 \$	32,993 \$	35,680 \$	38,522 \$	41,526 \$	44,701 \$	48,056	\$ 51,599	\$ 55,341 \$	59,291	63,460	\$ 67,859	\$ 72,499 \$	77,393 \$	82,553 \$	87,992	\$ 93,725 \$	99,766 \$	106,130 \$	112,833 \$	119,893
Cummulative Net Revenue	\$ 28,053 \$	58.507 \$	91,500 \$	127,180 \$	165.701 \$	207.227 \$	251.928 \$	299,984	\$ 351,583	\$406.924	466,215	529,675	\$ 597,533	\$670,033 \$	747,426 \$	829,978 \$	917,971	\$ 1,011,696 \$	1.111.462 \$	1 217 592 \$	1.330.426 \$	1,450,318

N	PV	\$860,000
A	vg. Annual Energy (MWh)	620

Appendix B-3: WTP Alternative Cost Estimates

Computa	72811				ŀ	Ċ	2
					-		•
Project:	Lake Wildwood WTP Evaluation Preliminary Cost Estimate			Comp Date:	outed:		RS 4/6/2017
Subject: Task:	Alternative 1-A -Upgrade and Expand Existing Treatment System			Revie			4/0/2017
	Capacity = 5.5 mgd			Date:			
	DESCRIPTION	QUANTITY	UNITS	UNIT	COST	TOT	AL COST
DIVISION 1 - GI	ENERAL REQUIREMENTS Mobilization	1	LS	-	2.50%	¢	99,884
	Start-up and commissioning		LS		2.50%	\$	99,884
	Demobilization		LS		2.50%	\$	99,884
	Bonds, Insurance, General Conditions	1	LS		5.00%	\$	199,768
	SUBTOTAL			_		\$	499,419
DIVISION 2 - SI		1	10	ć	20.000.00	ć	20,000
	Demolition of clarifiers Site grading for new plate settlers and filter		LS LS	\$ \$	12,000.00	\$ \$	12,000
	Excavation of canal for new screen		LS	\$	7,000.00	\$	7,000
	Soil cement sludge lagoon	10000	SF	\$	20.00	\$	200,000
	Modular Retaining Walls	3000	SF	\$	18.00	\$	54,000
	SUBTOTAL			_		\$	293,000
DIVISION 3 - CO		10	CY	ć	1 500 00	ć	15.000
	Hydraulic Structure for Coanda Screen Flocculation and Plate Settler Basins (common wall)	10 440	CY	\$ \$	1,500.00 1,200.00	\$ \$	15,000 528,000
	Pad for New Filter		CY	\$	900.00	\$	9,000
	Pad for UV Equipment		CY	\$	900.00	\$	13,500
	SUBTOTAL			I		\$	565,500
DIVISION 4 - M	ASONRY						
	01070711		L	_		\$	-
	SUBTOTAL					\$ \$	-
	Miscellaneous supports, walkways and stairs	1	LS	\$	35,000.00	\$	35,000
	Refurbish filter tanks		LS	\$	36,000.00	\$	36,000
	SUBTOTAL					\$	36,000
DIVISION 7 - TH	HERMAL AND MOISTURE CONNECTION						
				-		~	
	SUBTOTAL OORS AND WINDOWS			_		>	
DIVISION 8 - DO						\$	-
	SUBTOTAL					\$	-
DIVISION 9 - FI							
	Painting and Protective Coatings (piping, filters, and equipment)	1	LS	\$	48,000.00	\$	48,000
DIVISION 10 - S	SUBTOTAL					>	48,000
	Identification, Stenciling, and Tagging System	1	LS	\$	1,500.00	\$	1,500
	SUBTOTAL			Ť	_,	\$	1,500
DIVISION 11 - E	QUIPMENT						
	Coanda Screen		EA	\$	25,000	\$	25,000
	Floating decanter		EA	\$	22,500		45,000
	Flocculators Flocculators installation		EA EA	\$ \$	65,000 16,250	\$ \$	130,000 32,500
	SST Plate Settlers		EA	\$	165,000	\$	330,000
	SST Plate Settlers installation		EA	\$	41,250	\$	82,500
	Sludge Collectors	2	EA	\$	40,000	\$	80,000
	Sludge Collectors installation		EA	\$	10,000	\$	20,000
	UV Disinfection System (1 duty, 1 standby)	1	LS	\$	209,000	\$	209,000
	UV Disinfection Unit installation Backwash Pumps		LS EA	\$ \$	52,250 37,500	\$ \$	52,250 75,000
	Air Scour Blower		EA	\$	35,000	\$	35,000
	New circular filter	-	EA	\$	200,000	\$	400,000
	SUBTOTAL					\$	1,516,250
	SPECIAL CONSTRUCTION			1.			
	Pre-engineered metal canopy for UV equipment	400	ISE		60.00		24,000
		400	51	\$		\$ ¢	
		400	5	\$		\$ \$ \$	24 000
DIVISION 15 - M	SUBTOTAL	400	51	\$			24,000
DIVISION 15 - N	SUBTOTAL		LS	\$ \$	16,000		- 24,000 16,000
DIVISION 15 - N	SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves	1	LS LS	\$ \$ \$	16,000 100,000	\$ \$ \$ \$	16,000 100,000
DIVISION 15 - N	SUBTOTAL MECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition	1 1 1	เร เร เร	\$ \$ \$	16,000 100,000 200,000	\$ \$ \$ \$ \$	16,000 100,000 200,000
DIVISION 15 - N	SUBTOTAL WECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon	1 1 1 1	LS LS LS LS	\$ \$ \$ \$	16,000 100,000 200,000 20,000	\$ \$ \$ \$ \$ \$	16,000 100,000 200,000 20,000
DIVISION 15 - N	SUBTOTAL MECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition	1 1 1 1	เร เร เร	\$ \$ \$	16,000 100,000 200,000	\$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 20,000 25,000
DIVISION 15 - N	SUBTOTAL WECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon	1 1 1 1	LS LS LS LS	\$ \$ \$ \$	16,000 100,000 200,000 20,000	\$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 20,000 25,000 -
DIVISION 15 - N	SUBTOTAL WECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon	1 1 1 1	LS LS LS LS	\$ \$ \$ \$	16,000 100,000 200,000 20,000	\$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 20,000 25,000
DIVISION 15 - N	SUBTOTAL WECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL DIVISIONS 2-15	1 1 1 1	LS LS LS LS	\$ \$ \$ \$	16,000 100,000 200,000 20,000	\$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 20,000 25,000 - -
DIVISION 15 - M	SUBTOTAL SUBTOTAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL DIVISIONS 2-15 ELECTRICAL		LS LS LS LS	\$ \$ \$ \$	16,000 100,000 200,000 20,000 25,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 - - 361,000 2,845,250
DIVISION 15 - M	SUBTOTAL WECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUB		LS LS LS LS LS %	\$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 25,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 - - - 361,000 2,845,250 853,575
DIVISION 15 - M	SUBTOTAL SUBTOTAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace Diping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL DIVISIONS 2-15 ELECTRICAL Electrical panels and wiring Lighting		LS LS LS LS	\$ \$ \$ \$	16,000 100,000 200,000 20,000 25,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 25,000 - - - 361,000 2,845,250 853,575 12,000
DIVISION 15 - M	SUBTOTAL SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL DIVISIONS 2-15 ELECTRICAL Electrical panels and wiring Lighting SUBTOTAL		LS LS LS LS LS %	\$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 25,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 - - - 361,000 2,845,250 853,575
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL SUBTOTAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace Diping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL DIVISIONS 2-15 ELECTRICAL Electrical panels and wiring Lighting		LS LS LS LS LS K LS LS	\$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 25,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 25,000 - - - 361,000 2,845,250 853,575 12,000
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL WECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL DIVISIONS 2-15 ELECTRICAL Electrical panels and wiring Lighting SUBTOTAL NSTRUMENTATION		LS LS LS LS LS K LS LS	\$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 25,000 Div 2-15 12,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 2,000 2,000 2,000 2,000 2,845,250 853,575 12,000 865,575
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Electrical panels and wiring Lighting SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Controls and Programming Controls and Programming	1 1 1 1 1 1 1 1 1 1 1 1 0 0 NSITE CON	LS LS LS LS LS LS K LS K K STRUCTION	\$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 Div 2-15 12,000 Div 2-15	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 25,000 25,000 2,845,250 853,575 12,000 865,575 284,525
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Electrical panels and wiring Lighting SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Controls and Programming Controls and Programming	1 1 1 1 1 1 1 1 1 1 1 1 0 0 NSITE CON	LS LS LS LS LS LS K LS K K STRUCTION	\$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 Div 2-15 12,000 Div 2-15 NV 1) SUBTOTAL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 361,000 2,845,250 853,575 12,000 865,575 284,525 284,525 284,525 3,995,350
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Electrical panels and wiring Lighting SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Controls and Programming Controls and Programming	1 1 1 1 1 1 1 1 1 1 1 1 0 0 NSITE CON	LS LS LS LS LS LS K LS K K STRUCTION	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 200,000 25,000 Div 2-15 12,000 Div 2-15 NV 1) SUBTOTAL SION 1 (ABOVE) SUBTOTAL & PROFIT (15%)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 25,000 25,000 2,845,250 853,575 12,000 865,575 284,525 284,525 284,525 284,525 284,525 3,995,350 499,419 4,494,769 674,215
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Electrical panels and wiring Lighting SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Controls and Programming Controls and Programming	1 1 1 1 1 1 1 1 1 1 1 1 0 0 NSITE CON	LS LS LS LS LS LS K LS K K STRUCTION	S S S S S S S S S S S S S S S S S S S	16,000 100,000 200,000 25,000 Div 2-15 12,000 Div 2-15 12,000 Div 2-15 SUBTOTAL SION 1 (ABOVE) SUBTOTAL & PROFIT (15%) SUBTOTAL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 25,000 2,5,000 2,845,250 853,575 12,000 865,575 284,525 284,525 284,525 284,525 284,525 284,525 284,525 284,525 5,68,984
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Electrical panels and wiring Lighting SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Controls and Programming Controls and Programming	1 1 1 1 1 1 1 1 1 1 1 1 0 0 NSITE CON	LS LS LS LS LS LS LS STRUCTION ADDITIVE F((LESS D DIVI OH CON1	16,000 100,000 200,000 25,000 Div 2-15 12,000 Div 2-15 Uiv 1) SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 25,000 25,000 2,845,250 853,575 12,000 865,575 284,525 284,525 284,525 284,525 3,995,350 499,419 4,494,769 674,215 5,168,984 1,550,695
DIVISION 15 - N DIVISION 16 - E DIVISION 17 - I	SUBTOTAL SUBTOTAL VECHANICAL Piping connection to new Flocculation/Plate Settlers Replace Existing Filter Valves Replace piping in poor condition Piping to new sludge lagoon Piping for UV System SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Electrical panels and wiring Lighting SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL Controls and Programming Controls and Programming	1 1 1 1 1 1 1 1 1 1 1 1 0 0 NSITE CON	LS LS LS LS LS LS LS STRUCTION ADDITIVE F((LESS D DIVI OH CON1	16,000 100,000 200,000 25,000 Div 2-15 12,000 Div 2-15 Uiv 1) SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL SUBTOTAL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16,000 100,000 20,000 25,000 25,000 2,645,250 361,000 2,845,250 2845,250 2845,255 284,525 284,525 284,525 284,525 284,525 284,525 3,995,350 499,419 4,494,769 674,215 5,168,984

Computation					ŀ)	2
Project: Lake Wildwood WTP Evaluation	า				puted:		RS
Subject: Preliminary Cost Estimate				Date			4/6/2017
Task: Alternative 1-B -New Modular Treatment Plant Capacity = 5.5 mgd				Date	ewed:		
DESCRIPTION		QUANTITY	UNITS	_	COST	TOT	L COST
DESCRIPTION		QUANTIT	UNITS	UNIT	031	1014	LCOST
DIVISION 1 - GENERAL REQUIREMENTS							
Mobilization		1	LS		2.50%	\$	110,283
Start-up and commissioning			LS		2.50%	\$	110,283
Demobilization			LS		2.50%	\$	110,283
Bonds, Insurance, General Conditions		1	LS		5.00%	\$	220,566
	SUBTOTAL					\$	551,414
DIVISION 2 - SITE WORK							
Demolition of clarifiers and filters			LS	\$	35,000.00	\$	35,000
Site grading for new treatment modules			LS	\$	12,000.00	\$	12,000
Excavation of canal for new screen Modular Retaining Walls		1 3000		\$ \$	7,000.00 18.00	\$ \$	7,000
Soil cement sludge lagoon		10,000		\$ \$	20.00	\$ \$	200,000
	SUBTOTAL	10,000	51	Ş	20.00	\$	308,000
DIVISION 3 - CONCRETE	JODICIAL					*	300,000
Hydraulic Structure for Coanda Screen		10	СҮ	\$	1,500.00	\$	15,000
Pad for Modular Treatment Units		100		\$	900.00	\$	90,000
Pad for UV Equipment			CY	\$	900.00	\$	13,500
	SUBTOTAL					\$	118,500
DIVISION 4 - MASONRY				T			
						\$	-
	SUBTOTAL					\$	-
DIVISION 5 - MISCELLANEOUS METAL						\$	
Miscellaneous supports, walkways and stairs		1	LS	\$	25,000.00	\$	25,000
	SUBTOTAL						
DIVISION 7 - THERMAL AND MOISTURE CONNECTION	SUBIUIAL					>	
SWISION 7 - THERMAL AND MOISTORE CONNECTION							
	SUBTOTAL					¢	
DIVISION 8 - DOORS AND WINDOWS	JODICIAL					*	
						\$	
	SUBTOTAL					\$	-
DIVISION 9 - FINISHES							
Painting and Protective Coatings (piping and equipment)		1	LS	\$	35,000.00	\$	35,000
	SUBTOTAL					\$	35,000
DIVISION 10 - SPECIALTIES							
Identification, Stenciling, and Tagging System		1	LS	\$	1,000.00	\$	1,000
	SUBTOTAL					\$	1,000
DIVISION 11 - EQUIPMENT		1	F A	ć	25.000	ć	25.000
Coanda Screen Floating decanter			EA EA	\$ \$	25,000 22,500	\$ \$	25,000
Modular Treatment Unit (2 mgd each)			EA	\$	500,000	\$	1,500,000
Modular Treatment Unit installation			EA	\$	125,000	\$	375,000
UV Disinfection System (1 duty, 1 standby)			LS	\$	209,000	\$	209,000
UV Disinfection Unit installation		1	LS	\$	52,250	\$	52,250
Backwash Pumps		2	EA	\$	62,500	\$	125,000
Air Scour Blower		1	EA	\$	50,000	\$	50,000
	SUBTOTAL					\$	2,381,250
DIVISION 13 - SPECIAL CONSTRICTION							
Pre-engineered metal canopy for Modular Treatment Units		2200		\$	60.00		132,000
Pre-engineered metal canopy for UV equipment		400	SF	\$	60.00	\$	24,000
	CURTOTA			_		\$	450.000
DIVISION 15 - MECHANICAL	SUBTOTAL					\$	156,000
Piping connection to new Modular Treatment Units		1	LS	\$	24,000.00	\$	24,000
Replace piping in poor condition		1		\$ \$	200,000.00	\$ \$	24,000
Piping to new sludge lagoon			LS	\$	20,000.00	\$	200,000
Piping for UV System			LS	\$	15,000.00	\$	15,000
				1		\$	-
						\$	-
	SUBTOTAL					\$	259,000
SUBTOTAL DIV	ISIONS 2-15					\$	3,258,750
DIVISION 16 - ELECTRICAL							
Electrical panels and wiring		25		-	Div 2-15	\$	814,688
Lighting	SUBTOTAL	1	LS	\$	12,000	\$	12,000
	SOBIOIAL					\$	826,688
DIVISION 17 - INSTRUMENTATION		10	%		Div 2-15	ć	325,875
Controls and Programming	SUBTOTAL	10	/0	-	Div 2-15	\$ \$	325,87 325,87
I	SOBIOTAL	L	ı			*	323,07
		ONSITE CONS		(LESS D	IV 1) SUBTOTAL	ŝ	4,411,31
					SION 1 (ABOVE)	ŝ	551,414
					SUBTOTAL		4,962,72
				он	& PROFIT (15%)		744,40
					SUBTOTAL		5,707,13
				CONT	INGENCY (30%)		1,712,14
			ENGIN		and CM (20%)		1,141,42
					GRAND TOTAL		


Subject Perimane 10 - Quart Date:		SC	F				mber: 272811 putation
Take All protects by the protect of the	RS	RS	:	Computed:			•
Image: Carger() - 2.5 mg/d UMUT UMUT UMUT TOTAL CO Division 1 - Cartifal, REQUIREMINTS 1 1 1 2 2.000 1 Division 1 - Cartifal, REQUIREMINTS 1 1 1 1 2.000 1 1 1 1 1 2.000 1	/2017	4/6/2					Preliminary Cost Estimate
UNING UNITE UNITE <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
DYNSON 1 - GUNARDARYS Image: Control of the control of t)CT	TOTAL COS	. 1		LINUTE		
Modilization 1 5 2.5301 5 Berublization 1 5 2.2301 5 Demublization 1 1 5 2.2301 5 Distore 2, 547 MORE Image: Constitutions 5.00707A Image: Constitutions 5 7 0 1 5 7,000 5 Demobilization of Landrer 1 15 \$ 7,000 5 1,000 5 <t< th=""><th>31</th><th>TOTAL COS</th><th></th><th>UNIT COST</th><th>UNITS</th><th>QUANTIT</th><th>DESCRIPTION</th></t<>	31	TOTAL COS		UNIT COST	UNITS	QUANTIT	DESCRIPTION
Start-ga and commissioning 1 5 2.55% 5 Bords, huurance, Gerral Conditions 1 1 5 5.05% 5 DISSION 2.5 TF WORK 1 1 5 5.05% 5 Dission of canal for me screen 1 1 5 5.07% 5 Discontrol of canal for me screen 1 5 7.07% 5 7.00% 5 Discontrol digit light 2.225 5 5 7.00% 5 7.0							IN 1 - GENERAL REQUIREMENTS
Bornds instance. 1 15 2.2564 5 BORDS, MURATER, General Conditions SUNTOPAL I 5 5.0000 Deconstruction of a cinfer 1 15 5 7.0000 Deconstruction of a cinfer 1 15 5 7.0000 5 Deconstruction of a cinfer 10 7 5 7.2000 5 Deconstruction of a cinfer 3.000 9 5 2.2000 5 Different fragrams Walls 2.000 7 5 1.2000 5 Different fragrams Walls 2.000 7 5 1.2000 5 Different fragrams Walls 2.000 7 5 1.2000 5 Different fragrams Walls 1.000 5 5 2.0000 5 Different fragrams Walls SUNTOPAL 2 8 2.0000 5 Different fragrams Walls SUNTOPAL 2 8 2.0000 5 Different fragrams Walls SUNTOPAL 2 8 <td>60,334</td> <td>\$</td> <td></td> <td></td> <td></td> <td></td> <td></td>	60,334	\$					
Bonds, Insurance, General Conditions SUBTOR I S 5, 5000 S Derson Long Vision Substance I S 7, 2000 S Derson Long Vision I S 7, 2000 S S 1, 2000 S Derson Long Vision I S 7, 2000 S	60,334						
SUBTOTA Image: Subtor of care if rew screen Image: Subtor of care if rew screen </td <td>60,334 120,668</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	60,334 120,668	-					
Diversion of carlier Image: Control of carlier Image: Control of carlier Excavation of carlier rew screen 16 5 7,000 5 Moduler framming Version 2200 5 16.000 5 Moduler framming Version SUBTOTAL 0 7 5 23.000 5 Moduler framming Version SUBTOTAL 0 7 5 23.000 5 Moduler framming Version SUBTOTAL 0 7 5 90.000 5 Procession and Partic Setter Rease 230 10 7 5 90.000 5 Version 4 Maconteres SUBTOTAL 0 0 5 Version 4 Maconteres 115 5 20.000 5 Microlations supports, sublewys and stars 115 5 20.000 5 Microlations supports, sublewys and stars 115 5 20.000 5 Microlations supports, sublewys and stars 115 5 9.000 5 Version 4 Supporte	301,669	ې \$	5.00%		13	1	
Securation of canal for new screen 1 1 5 7,000 5 Solid comment clugging bagoon 5000 57 5 25,000 5 Solid comment clugging bagoon 5000 57 5 25,000 5 Solid comment clugging bagoon 500 57 5 25,000 5 Solid comment clugging bagoon 500 57 5 1,000,00 5 Part for UV Equipment 1,010 6 1,000,00 5 5 Solid comment clugging bagoon SultTOTAL 0 0 5 5 Solid comment clugging bagoon SultTOTAL 1 5 2,20,000 5 Solid comment clugging bagoon SultTOTAL 1 5 2,20,000 5 Solid comment clugging bagoon SultTOTAL 0 0 5 0 Solid comment clugging bagoon SultTOTAL 0 0 0 0 Solid comment clugging bagoon SultTOTAL 0 0 0 0							
Modular Retaining Valia 2250 SF 5 18.00 S Solicement Studge Boon SUNTOTAL SINTOTAL SINTOTAL SINTOTAL My Craule Structure for Canda Screen 10 Cr S 1.500.00 S Procession and Prace Strethe Bain 220 Cr S 1.500.00 S Part for UP Explorite SUNTOTAL D Cr S 1.500.00 S SUNTOTAL D D S 1.500.00 S S 1.500.00 S SUNTOTAL D D S 1.500.00 S S S SUNTOTAL D D S S S S S SUNTOTAL D D S	11,000						
Solit comment aluge lagoon SUBTORA Solit comment aluge lagoon SUBTORA Solit comment aluge lagoon	7,000						
NUMBOR CONCRETE Image: Control of the state is a state in the state is a state is a state in the state is a state is a state in the state is a state is a state in the state is a state in the state is a state is a state is a state in the state is a state a state is a state is a state a state is a state is a st	40,500 125,000						
NYSION 2- CONCRTF Important Structure for Coanda Screen 10000 10000 10000 100000 10000 10000	183,500	ې \$	25.00	Ş	31	5000	
Hocculation and Pluti Settler Basin 230 Cr \$ 120000 \$ \$ Hocculation and Pluti Settler Basin 120 Cr \$ 90000 \$ \$ JUNSION 4 - MASONIV Image: Cr \$ 90000 \$ \$ JUNSION 4 - MASONIV Image: Cr \$ 90000 \$ \$ JUNSION 4 - MASONIV Image: Cr \$ \$ \$ Miccellaneous supports, wellways and states 13 S \$ 22000 \$ \$ Miccellaneous supports, wellways and states 13 S \$ 20000 \$ \$ Refurbal Canffer 13 S \$ 20000 \$ \$ \$ NUNSION 7 - THERMAL AND MOISTURE CONNECTION Image: Connection State Stat							
Pad for UV Equipment SUBTOTAL 15 900.00 5 JVISION 4 MASONEY Image: Subtot 1. Ima	15,000	\$	1,500.00	\$	СҮ	10	Hydraulic Structure for Coanda Screen
SUBTOTAL SUBTOTAL S NYSON A - AASONY S S NYSON A - MASONY S S Micclaneous supports SUBTOTAL S S Micclaneous supports 1.15 S 2.0000 S Refurbit darifier 1.15 S 2.0000 S Refurbit darifier 1.15 S 2.0000 S NUSION 7 - THERMAL AND MOISTURE CONNECTION S S S NUSION 8 - DOODS AND WINDOWS S S S Painting and Protective Coatings (piping, filter, dariffers and equipment) 1.15 S 9.0000 SUNSION 9 - FINISHES S 1.0000 S S SUNSION 10 - SECIALTIES S 1.0000 S S SUNSION 11 - SECIALTIES S 1.0000 S S SUNSION 12 - SECIALTIES S 1.0000 S S SUNSION 13 - SECIALTIES S 1.0000 S S SUNSION 14 - SECIALTIES S 1.0000	276,000	-					
DNISION 4 - MASONW Image: Support, walkways and stairs Image: Support, walkways a	13,500	\$	900.00	\$	CY	15	
Junison Subtrotat S Miscellaneous supports, walkways and stairs 1 1 S 2.20,00 S Refurbin Carifier 1 S 2.20,00 S Refurbin Carifier S 3.0,00 S Refurbin Carifier 1 S S 3.0,00 S S SUBSON 7- INFERMAL AND MOISTURE CONNECTION Image: Substrotat	304,500	\$					
Surgion Surgion A	-	Ś					
DVISION 3- MISCELLAREOUS METAL Image: metal state is a state state is a state a s	-	\$		-	-		SUBTOTAL
Aefurbish filter tanks 1 S 20000 S Refurbish filter tanks 1 S 36,000 S NVISION 7 - THERMAL AND MOISTURE CONNECTION I I S 36,000 NVISION 7 - THERMAL AND MOISTURE CONNECTION I I S S SUBTOTAL I I S S Painting and Protective Coatings (pping, filters, clariflers and equipment) S S S SUNSION 3 - SPECIATHES I I S S Identification, Steencling, and Tagging System I IS S S SUNSION 3 - GuipmeNT I I S S S Coanda Screen I I S S S S Flacculators installation <td< td=""><td>-</td><td>\$</td><td></td><td></td><td></td><td></td><td></td></td<>	-	\$					
Refurbish filter tanks 1 [5] \$ 36,000 \$ INVISION 7 - THERMAL AND MOISTURE CONNECTION INVISION 8 - DOCORS AND WINDOWS INVISION 8 - DOCORS AND WINDOWS INVISION 9 - FINISHES INVISION 9 - FINISHES INVISION 9 - FINISHES INVISION 1 - SECIALTIES INVISION 1 - SECIALTI	25,000	-					
Disconsistion Subtromail Disconsisting Subtromail S	20,000	\$					
Division 7 - THERMAL AND MOISTURE CONNECTION Image: Constraint of the second seco	36,000	Ş	36,000	Ş	LS	1	Keturbish filter tanks
Division 7 - THERMAL AND MOISTURE CONNECTION Image: Constraint of the second seco							
DIVISION 7. THERMAL AND MOISTURE CONNECTION Image: Constraint of the second secon	81,000	s					SUBTOTAL
DIVISION 8 - DOORS AND WINDOWS Image: Control of the second	,	*					
DIVISION 8 - DOORS AND WINDOWS Image: Substrate in the substrate in							
SUBTOTAL S DIVISION 9 - FINISHES Painting and Protective Coatings (piping, filters, dariflers and equipment) 1 LS \$ 90,000 \$ Painting and Protective Coatings (piping, filters, dariflers and equipment) 1 LS \$ 90,000 \$ Identification, Stenciling, and Tagging System 1 LS \$ 1,000.00 \$ DIVISION 10 - SPECIATIES U \$ \$ \$ \$ Division 11 - EQUIPMENT I LA \$ \$ \$ \$ Conada Screen 1 EA \$ \$ \$ \$ \$ Floctulators installation 1 EA \$	-	\$					
SUBTOTAL S Painting and Protective Coatings (piping, filters, clarifiers and equipment) ILS \$ 90,000 \$ SUBTOTAL ILS \$ 90,000 \$ Identification, Stenciling, and Tagging System ILS \$ 90,000 \$ Identification, Stenciling, and Tagging System ILS \$ 90,000 \$ Identification, Stenciling, and Tagging System ILS \$ 10,000 \$ Identification, Stenciling, and Tagging System ILE ILE \$ Coanda Screen ILEA \$ 225,000 \$ Flocating decanter ILEA \$ 16,63 \$ Flocations installation ILEA \$ 16,63 \$ SST Plate Settlers installation ILEA \$ 16,63 \$ 40,000 Subdige Collectors installation ILEA \$ 16,00 \$ UV Disinfection installation ILE \$ 33,000 \$ Backwash Pumps ILEA \$ 60,00 \$ VU Disinfection System (1 dur, 1 standby) ILE \$ 33,000 \$ Backwash Pumps ILEA \$ 000,000 \$ Pre-engineered metal Canopy for UV equipment 400 \$ \$ Pre-engineered metal Canopy for UV equipment 400 \$ \$ Pre-e							N 8 - DOORS AND WINDOWS
Division 9 - Prinsing Image: Subscript of the subsc	-	Ş					CURTOTAL
Painting and Protective Coatings (piping, filters, clarifiers and equipment) SUBTOTAL S 90,000 S DIVISION 10 - SPECIALTIES I I I I S 90,000 S DIVISION 10 - SPECIALTIES I I I S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 2 S<		Ş					SUBTOTAL
Painting and Protective Coating: (piping, filters, clarifiers and equipment) SUBTOTAL S 90,000 S Identification, Stenciling, and Tagging System 1 LS S 3,000,00 S Identification, Stenciling, and Tagging System 1 LS S 3,000,00 S Identification, Stenciling, and Tagging System 1 LS S 3,000,00 S Identification, Stenciling, and Tagging System 1 LA S 2,500 S Floating decarter 2 EA S 22,500 S Floating decarter 1 EA S 16,250 S STP late Settlers installation 1 EA S 15,000 S Stridge Collectors installation 1 EA S 15,000 S UV Disinfection System (1 dury, 1 standby) 1 LS S 35,000 S UV Disinfection Unit installation 1 EA S 35,000 S NISION 13 - SPECIAL CONSTRICTION I S 35,000 S NISION 15 - MECHANICAL S S S S							IN 9 - FINISHES
equipment) 1LS S 90,000 S DIVISION 10 - SPECIALTIES I							
DIVISION 10 - SPECIALTIES Image: constraint of the second se	90,000	\$	90,000	\$	LS	1	
Identification, Stenciling, and Tagging System 1 IS \$ 1,000.00 \$ DIVISION 11 - EQUIPMENT IEA \$ 25,000 \$ Coanda Screen 1 EA \$ 25,000 \$ Floating decanter 2EA \$ 22,500 \$ Floating decanter 2EA \$ 22,500 \$ ST Plate Settlers 1 EA \$ 16,520 \$ ST Plate Settlers installation 1 EA \$ 40,000 \$ St Udge Collectors installation 1 EA \$ 40,000 \$ UV Disinfection System (1 duty, 1 standby) 1 IS \$ 15,500 \$ UV Disinfection System (1 duty, 1 standby) 1 IS \$ 38,000 \$ Air Scour Blower 1 EA \$ 35,000 \$ SUSION 13 - SPECIAL CONSTRUCTION IEA \$ 40,000 \$ Pre-engineered metal canopy for UV equipment 400 \$ \$ DIVISION 15 - MECHANICAL S 1 \$ 10,000,000 \$ Pring for	90,000	\$					
SUBTOTAL SUBTOTAL S Coanda Screen 1 EA \$ 25,000 \$ Cloating decanter 2 EA \$ 22,500 \$ Floctulators 1 EA \$ 65,000 \$ Stream 1 EA \$ 65,000 \$ Stream 1 EA \$ 16,250 \$ Stream 1 EA \$ 156,000 \$ Stream 1 EA \$ 156,000 \$ Stream 1 EA \$ 156,000 \$ Studge Collectors installation 1 EA \$ 39,000 \$ UV Disinfection Vult installation 1 EA \$ 10,000 \$ UV Disinfection Vult installation 1 EA \$ 37,000 \$ VUSION 13 - SPECIAL CONSTRICTION 1 EA \$ 37,000 \$ VISION 13 - SPECIAL CONSTRICTION 1 EA \$ 60,000 \$ VISION 15 - MECHANICAL 5 \$ \$ Replace Existing Filter Valves 1 ES \$ 10,000,000 \$ Priping to new sludge lagoon 1 ES \$ 200,000,00						-	
DIVISION 11 - EQUIPMENT Image: Control of the second screen Image: Control of the second screen Image: Control of the second screen Control screen <thcontrol screen<="" th=""> Control screen <thc< td=""><td>1,000 1,000</td><td>Ş</td><td>1,000.00</td><td>Ş</td><td>LS</td><td>1</td><td></td></thc<></thcontrol>	1,000 1,000	Ş	1,000.00	Ş	LS	1	
Coanda Screen 1 FA \$ 25,000 \$ Floating decanter 2 EA \$ 22,500 \$ Floating decanter 2 EA \$ 22,500 \$ Floating decanter 1 EA \$ 65,000 \$ ST Plate Settlers installation 1 EA \$ 155,000 \$ St Plate Settlers installation 1 EA \$ 40,000 \$ Studge Collectors installation 1 EA \$ 100,000 \$ UV Disinfection Vuit installation 1 EA \$ 100,000 \$ UV Disinfection Vuit installation 1 EA \$ 37,500 \$ Air Scour Blower 1 EA \$ 37,500 \$ Pre-engineerd metal canopy for UV equipment 4000 \$ \$ Prive-engineerd metal canopy for UV equipment 4000 \$ \$ Replace Existing Filter Valves 1 \$ \$ \$ SUBTOTAL \$ \$ \$ \$ Pre-engineerder metal canopy	1,000	•					
Flocculators 1 EA \$ 65,000 \$ Hocculators installation 1 EA \$ 16,250 \$ SST Plate Settlers 1 EA \$ 16,000 \$ SST Plate Settlers 1 EA \$ 39,000 \$ Sludge Collectors 1 EA \$ 40,000 \$ UV Disinfection System (1 duty, 1 standby) 1 IS \$ 15,000 \$ UV Disinfection Duti installation 1 IS \$ 38,000 \$ Backwash Pumps 2 EA \$ 37,500 \$ Air Sour Blower 1 EA \$ 60,00 \$ DIVISION 13 - SPECIAL CONSTRUCTION Image: Secient Construction \$ \$ Pre-engineered metal canopy for UV equipment 400 SF \$ 60,000 \$ Image: Secient Construct Aut Image: Secient Aut S \$ \$ \$ Image: Secisting Filter Valves 1 LS	25,000	\$	25,000	\$	EA	1	
Flocculators installation 1 EA \$ 16,250 \$ SST Plate Settlers 11 EA \$ 156,000 \$ SST Plate Settlers installation 1 EA \$ 39,000 \$ Sludge Collectors 1 EA \$ 40,000 \$ UV Disinfection System (1 duty, 1 standby) 1 LS \$ 152,000 \$ UV Disinfection Unit installation 1 LS \$ 38,000 \$ Backwash Pumps 2 EA \$ 37,500 \$ Division 13 - SPECIAL CONSTRICTION 1 EA \$ 35,000 \$ Division 15 - MECHANICAL 0 5 60,000 \$ \$ Division 15 - MECHANICAL 0 5 20,000,000 \$ \$ Replace Existing Filter Valves 1 LS \$ 20,000,000 \$ Piping to new sludge lagoon 1 LS \$ 20,000,000 \$ Piping to new sludge lagoon	45,000	\$	22,500	\$	EA	2	Floating decanter
SST Plate Settlers 1 EA \$ 15,000 \$ SST Plate Settlers installation 1 EA \$ 39,000 \$ Sludge Collectors 1 EA \$ 39,000 \$ UV Disinfection System (1 duty, 1 standby) 1 15 \$ 152,000 \$ UV Disinfection Unit installation 1 LS \$ 38,000 \$ Backwash Pumps 2 EA \$ 37,500 \$ Air Scour Blower 1 EA \$ 35,000 \$ Pre-engineered metal canopy for UV equipment 400 SF \$ 60,00 \$ SUBTOTAL \$ \$ \$ SUNSION 15-MECHANICAL \$ \$ \$ \$ Replace Existing Filter Valves 1 LS \$ 20,000.00 \$ \$ Priping to new sludge lagoon 1 LS \$ 20,000.00 \$ \$ <t< td=""><td>65,000</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	65,000						
SST Plate Settlers installation 1 EA \$ 39,000 \$ Sludge Collectors 1 EA \$ 40,000 \$ UV Disinfections installation 1 EA \$ 10,000 \$ UV Disinfection System (1 duty, 1 standby) 1 LS \$ 152,000 \$ UV Disinfection Unit installation 1 LS \$ 38,000 \$ Backwash Pumps 2 EA \$ 37,500 \$ Air Scour Blower 1 EA \$ 35,000 \$ DIVISION 13 - SPECIAL CONSTRICTION \$ \$ \$ Pre-engineered metal canopy for UV equipment 400 \$F \$ 60.00 \$ SIVISION 15 - MECHANICAL \$ \$ \$ \$ Replace Existing Filter Valves 1 LS \$ 100,000.00 \$ Replace Existing Filter Valves 1 LS \$ 100,000.00 \$ Piping to new sludge lagoon 1 LS \$ 100,000.00 \$ Piping for UV System 1 LS \$ 100,000.00 \$ Electrical panels and wiring 10 S \$	16,250						
Studge Collectors 1 EA \$ 40,000 \$ Studge Collectors installation 1 EA \$ 40,000 \$ UV Disinfection System (1 duty, 1 standby) 1 IS \$ 152,000 \$ UV Disinfection Unit installation 1 IS \$ 38,000 \$ Backwash Pumps 2 EA \$ 37,500 \$ Air Scour Blower 1 EA \$ 38,000 \$ DIVISION 13 - SPECIAL CONSTRICTION 1 EA \$ 35,000 \$ Pre-engineered metal canopy for UV equipment 400 SF \$ 60.00 \$ SUBTOTAL \$ \$ \$ \$ DIVISION 15 - MECHANICAL \$ \$ \$ \$ Replace Existing Filter Valves 1 LS \$ 100,000.00 \$ Piping to new sludge lagoon 1 LS \$ 20,000.00 \$ Piping for UV System 1 LS \$ 20,000.00 \$ Piping for UV System 1 LS \$ 20,000.00 \$ UBTOTAL DIVISION 2-15 \$ \$ \$ USUBTOTAL \$ \$	156,000 39,000						
Studge Collectors installation 1 EA \$ 10,000 \$ UV Disinfection System (1 duty, 1 standby) 1 L5 \$ 152,000 \$ UV Disinfection System (1 duty, 1 standby) 1 L5 \$ 38,000 \$ Backwash Pumps 2 EA \$ 37,500 \$ Air Scour Blower 1 EA \$ 33,000 \$ DIVISION 13 - SPECIAL CONSTRICTION 1 EA \$ 35,000 \$ Pre-engineered metal canopy for UV equipment 400 \$F \$ 60.00 \$ DIVISION 13 - SPECIAL CONSTRICTION 1 EA \$ 200,000.00 \$ \$ Replace Existing Filter Valves 1 LS \$ 100,000.00 \$ \$ NISION 15 - MECHANICAL 5 \$ 200,000.00 \$ \$ Replace Existing Filter Valves 1 LS \$ 200,000.00 \$ \$ Piping to new sludge lagoon 1 LS \$ 200,000.00 \$ \$ Uping for UV System 1 LS \$ 15,000.00 \$ \$ Uping for UV System 1 LS \$ 10,000.00 \$ \$	40,000	Ś					
UV Disinfection Unit installation 1 LS \$ 38,000 \$ Backwash Pumps 2 EA \$ 37,500 \$ Air Scour Blower 1 EA \$ 35,000 \$ DIVISION 13 - SPECIAL CONSTRICTION IEA \$ 35,000 \$ Pre-engineered metal canopy for UV equipment 400 \$F \$ 60,000 \$ DIVISION 15 - MECHANICAL SUBTOTAL ILS \$ 100,000,000 \$ Replace Existing Filter Valves 1 LS \$ 200,000,000 \$ Piping to new sludge lagoon 1 LS \$ 200,000,00 \$ Piping for UV System 1 LS \$ 15,000,00 \$ Electrical panels and wiring 1 LS \$ 15,000,00 \$ Ughting 30 % Div 2-15 \$ \$ DIVISION 16 - ELECTRICAL \$ \$ \$ \$ Ughting 1 LS \$	10,000	\$					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Backwash Pumps 2 EA \$ 37,500 \$ Air Scour Blower 1 EA \$ 35,000 \$ DIVISION 13 - SPECIAL CONSTRICTION Image: Construction Image: Construction \$ \$ Pre-engineered metal canopy for UV equipment 400 SF \$ 60.00 \$ DIVISION 13 - SPECIAL CONSTRICTION Image: Construction \$ \$ \$ \$ DIVISION 13 - SPECIAL CONSTRICTION SUBTOTAL Image: Construction \$ \$ \$ \$ DIVISION 15 - MECHANICAL SUBTOTAL Image: Construction \$ \$ \$ \$ Replace piping in poor condition 1 LS \$ 100,000.00 \$	152,000	\$				1	
Air Scour Blower 1 EA \$ 35,000 \$ DIVISION 13 - SPECIAL CONSTRICTION \$	38,000	\$		\$		-	
SUBTOTAL \$ DIVISION 13 - SPECIAL CONSTRICTION \$ Pre-engineered metal canopy for UV equipment 400 SF \$ SUBTOTAL \$ \$ DIVISION 15 - MECHANICAL \$ \$ Replace Existing Filter Valves 1 LS \$ 100,000.00 Replace Existing Filter Valves 1 LS \$ 200,000.00 Piping to new sludge lagoon 1 LS \$ 20,000.00 Piping for UV System 1 LS \$ 15,000.00 Vision 16 - ELECTRICAL \$ \$ Electrical panels and wiring 30 % Div 2-15 Ughting 1 LS \$ 12,000 SUBTOTAL \$ \$ DIVISION 17 - INSTRUMENTATION \$ \$ Controls and Programming 10 % Div 2-15 SUBTOTAL \$ \$ SUBTOTAL \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ SUBTOTAL \$ \$ ONSITE CONSTRUCTION 1 (ABOVE) \$ SUBTOTAL \$ SUBTOTAL \$ CONTINGENCY (30%) \$	75,000	\$		\$ ¢			
DIVISION 13 - SPECIAL CONSTRICTION Image: Construction of the second secon	35,000		35,000	Ş	ЕA	1	
Pre-engineered metal canopy for UV equipment 400 SF \$ 60.00 \$ SUBTOTAL \$ SUBTOTAL \$ Replace Existing Filter Valves 1 LS \$ 200,000.00 \$ Piping to new sludge lagoon 1 LS \$ 200,000.00 \$ Piping to new sludge lagoon 1 LS \$ 200,000.00 \$ Piping for UV System 1 LS \$ 20,000.00 \$ Piping for UV System 1 LS \$ 20,000.00 \$ SUBTOTAL \$ \$ \$ \$ \$ Lighting	696,250	Ş					
SUBTOTAL \$ SUBTOTAL \$ Replace Existing Filter Valves 1 LS \$ 100,000,00 \$ Replace piping in poor condition 1 LS \$ 200,000,00 \$ Piping to new sludge lagoon 1 LS \$ 200,000,00 \$ Piping to rew sludge lagoon 1 LS \$ 200,000,00 \$ Piping for UV System 1 LS \$ 200,000,00 \$ Image: Subtotal subtotal \$ \$ \$ \$ \$ SUBTOTAL DIVISION 5 - LECTRICAL \$ \$ \$ \$ Electrical panels and wiring 30 % Div 2-15 \$ Lighting 1 LS \$ 10 \$ Division 17 - INSTRUMENTATION \$ \$ \$ \$ Controls and Programming 10 % Division 1 (ABOVE) \$ SUBTOTAL \$ \$ \$ \$ \$ ONSITE CONSTRUCTION (24,000	\$	60.00	\$	SF	400	
SUBTOTAL \$ DIVISION 15 - MECHANICAL Replace Existing Filter Valves 1 LS \$ 100,000.00 \$ Replace Existing Filter Valves 1 LS \$ 200,000.00 \$ Piping to new sludge lagoon 1 LS \$ 200,000.00 \$ Piping for UV System 1 LS \$ 15,000.00 \$ Image: Subtot All Divisions 2-15 Image: Subtot All Divisions 2-15 \$ \$ SUBTOTAL Divisions 2-15 Image: Subtot All Divisions 2-15 \$ \$ Electrical panels and wiring 30 % Div 2-15 \$ SUBTOTAL Image: Subtot All Division 1 (LS S 12,000 \$ \$ \$ Division 17 - INSTRUMENTATION Image: Subtot All Division 1 (MBOVE) \$ \$ \$ SUBTOTAL Subtot All Division 1 (MBOVE) \$ \$ \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOT AL \$ \$ \$ \$ \$ DIVISION 17 - INSTRUMENTATION Image: Subtot All Division 1 (MBOVE) \$ \$ \$ \$ \$ </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
Replace Existing Filter Valves 1 LS \$ 100,000.00 \$ Replace piping in poor condition 1 LS \$ 200,000.00 \$ Piping to new sludge lagoon 1 LS \$ 20,000.00 \$ Piping to new sludge lagoon 1 LS \$ 20,000.00 \$ Piping for UV System 1 LS \$ 20,000.00 \$ Piping for UV System 1 LS \$ 15,000.00 \$ Image: Construction of the construction	24,000	\$					
Replace piping in poor condition 1 LS \$ 200,000.00 \$ Piping to new sludge lagoon 1 LS \$ 20,000.00 \$ Piping for UV System 1 LS \$ 15,000.00 \$ ILS \$ 15,000.00 \$ \$ SUBTOTAL \$ \$ \$ SUBTOTAL DIVISION 2-15 \$ \$ Electrical panels and wiring 30 % Div 2-15 \$ Uighting \$ 1LS \$ 12,000 \$ SUBTOTAL \$ \$ \$ Controls and Programming 10 % Div 2-15 \$ SUBTOTAL \$ \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$ SUBTOTAL \$ \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$ OH & PROFIT (15%) \$ \$ \$ SUBTOTAL \$ \$ \$	465	é.		é	10		
Piping to new sludge lagoon 1 LS \$ 20,000.00 \$ Piping for UV System 1 LS \$ 15,000.00 \$ ILS \$ 15,000.00 \$ \$ \$ ILS \$ 15,000.00 \$ \$ ILS \$ 15,000.00 \$ \$ ILS \$ \$ \$ \$ \$ ILS \$ \$ \$ \$ \$ SUBTOTAL \$ \$ \$ \$ \$ DIVISION 16 - ELECTRICAL \$ \$ \$ \$ \$ Electrical panels and wiring 30 % Div 2-15 \$ \$ DIVISION 17 - INSTRUMENTATION \$ \$ \$ \$ \$ Controls and Programming 10 % Div 2-15 \$ \$ SUBTOTAL \$ \$ \$ \$ \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$	100,000						
Piping for UV System 1 LS \$ 15,000.00 \$ Image: Subtrom state in the s	200,000 20,000						
Image: Substant	15,000						
SUBTOTAL \$ SUBTOTAL DIVISIONS 2-15 \$ DIVISION 16 - ELECTRICAL \$ Electrical panels and wiring 30 % Div 2-15 Lighting 1 LS \$ 12,000 SUBTOTAL \$ \$ DIVISION 17 - INSTRUMENTATION \$ \$ Controls and Programming 10 % Div 2-15 \$ SUBTOTAL \$ \$ \$	-		2,230.00			1	· · · · · · · · · · · · · · · · · · ·
SUBTOTAL DIVISIONS 2-15 SIVISION 16 - ELECTRICAL Electrical panels and wiring Lighting SUBTOTAL Controls and Programming Controls and Programming SUBTOTAL SUBTOTAL SUBTOTAL CONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL	-						
DIVISION 16 - ELECTRICAL Electrical panels and wiring 30 % Div 2-15 \$ Ughting 1 LS \$ 12,000 \$ SUBTOTAL 5 \$ 12,000 \$ ILS \$ 12,000 \$ SUBTOTAL 5 \$ Controls and Programming 10 % Div 2-15 \$ SUBTOTAL 5 \$ ONSITE CONSTRUCTION (LESS Div 1) SUBTOTAL \$ (ADDITIVE FOR) DIVISION 1 (ABOVE) \$ SUBTOTAL \$ OH & PROFIT (15%) \$ SUBTOTAL \$ OH & PROFIT (15%) \$ SUBTOTAL \$ CONTINGENCY (30%) \$	335,000	\$					
Electrical panels and wiring 30 % Div 2-15 \$ Lighting 1 LS \$ 12,000 \$ DIVISION 17 - INSTRUMENTATION \$ \$ Controls and Programming 10 % Div 2-15 \$ SUBTOTAL \$ \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$ CONTIVE FOR) DIVISION 1 (ABOVE) \$ SUBTOTAL \$ OH & PROFIT (15%) \$ \$ \$ \$ SUBTOTAL \$ \$ \$ \$	1,715,250	\$ 1					
Lighting 1 LS \$ 12,000 \$ SUBTOTAL SUBTOTAL \$ Controls and Programming 10 % Div 2-15 \$ Controls and Programming 10 % Div 2-15 \$ SUBTOTAL SUBTOTAL \$ \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$ \$ UPUID CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$ \$ ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$ \$ UPUID CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ \$ \$ SUBTOTAL \$ \$ \$ \$ OH & PROFIT (15%) \$ \$ \$ \$ SUBTOTAL \$ \$ \$ \$	E14 575	ć	2.15	Di. 2	9/		
SUBTOTAL SUB	514,575 12,000						
DIVISION 17 - INSTRUMENTATION Controls and Programming SUBTOTAL ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL SUBTOTAL OH & PROFIT (15%) SUBTOTAL SUBTOTA	526,575	\$	12,000	· ·	-	1	
SUBTOTAL SUB							
ONSITE CONSTRUCTION (LESS DIV 1) SUBTOTAL \$ (ADDITIVE FOR) DIVISION 1 (ABOVE) \$ SUBTOTAL \$ OH & PROFIT (15%) \$ SUBTOTAL \$ SUBTOTAL \$ CONTINGENCY (30%) \$	171,525	\$	2-15	Div 2-	%	10	
(ADDITIVE FOR) DIVISION 1 (ABOVE) \$ SUBTOTAL SUB	171,525	\$					SUBTOTAL
(ADDITIVE FOR) DIVISION 1 (ABOVE) \$ SUBTOTAL SUB	2 442 200		CURTOT	ECC PN/ -1	CTRUCTOR	ONCITE CO.	
SUBTOTAL \$ OH & PROFIT (15%) \$ SUBTOTAL \$ CONTINGENCY (30%) \$	2,413,350 301,669						
OH & PROFIT (15%) \$ SUBTOTAL \$ CONTINGENCY (30%) \$	2,715,019					(4	
SUBTOTAL \$ CONTINGENCY (30%) \$	407,253						
CONTINGENCY (30%) 💲	3,122,272						
ENGINEERING AND CM (20%) 💲	936,681	\$	NCY (30%)	CONTINGEN			
	624,454	\$	O CM (20%)	ERING AND C	ENGINI		
GRAND TOTAL 💲	4,683,000		ND 707	a			

						7	_
Computa	tion					0	<
Project:	Lake Wildwood WTP Evaluation			Com	puted:		RS
Subject:	Preliminary Cost Estimate			Date			4/6/2017
Task:	Alternative 2-B -New Modular Treatment Plant Capacity = 2.5 mgd			Date	ewed:		
	DESCRIPTION	QUANTITY	UNITS	_	T COST	TOTA	L COST
			1.6		0.504	A	CO.050
	Mobilization Start-up and commissioning		LS LS		2.50%		69,353 69,353
	Demobilization		LS		2.50%		69,353
	Bonds, Insurance, General Conditions	1	LS		5.00%	\$	138,705
	SUBTOTAL			_		\$	346,763
DIVISION 2 - SIT	Demolition of clarifiers and filters	1	LS	\$	35.000.00	\$	35,000
	Site grading for new treatment modules		LS	\$	12,000.00	\$	12,000
	Excavation of canal for new screen		LS	\$	7,000.00	\$	7,000
	Modular Retaining Walls	2250		\$	18.00	\$	40,500
	Soil cement sludge lagoon SUBTOTAL	5,000	SF	\$	25.00	\$ \$	125,000 219,500
DIVISION 3 - CO						Ť	223,000
	Hydraulic Structure for Coanda Screen		СҮ	\$	15,000.00	\$	150,000
	Pad for Modular Treatment Units		CY	\$	900.00	\$	63,000
	Pad for UV Equipment SUBTOTAL	15	CY	\$	900.00	\$ \$	13,500 226,500
DIVISION 4 - M		_				Ť	
						\$	
	SUBTOTAL					د	
	ISCELLANEOUS METAL Miscellaneous supports	1	LS	Ś	15,000.00	\$ \$	- 15,000
		1	1.5	ç	13,000.00	Ş	15,000
	SUBTOTAL					\$	-
DIVISION 7 - TH	IERMAL AND MOISTURE CONNECTION						
	SUBTOTAL			_		\$	-
DIVISION 8 - DO	DORS AND WINDOWS					*	
						\$	-
	SUBTOTAL			_		\$	-
DIVISION 9 - FI	NISHES Painting and Protective Coatings (piping and equipment)	1	LS	\$	25,000.00	\$	25,000
	SUBTOTAL	-	25	Ţ	25,000.00	\$	25,000
DIVISION 10 - S							
	Identification, Stenciling, and Tagging System	1	LS	\$	1,000.00	\$	1,000
DIVISION 11 - E	SUBTOTAL					\$	1,000
	Coanda Screen	1	EA	\$	25,000	\$	25,000
	Floating decanter		EA	\$	22,500	\$	45,000
	Modular Treatment Unit (1.0 mgd each) Modular Treatment Unit installation		EA EA	\$ \$	250,000 62,500	\$ \$	750,000 125,000
	UV Disinfection System (1 duty, 1 standby)		LS	ې \$	152,000	\$ \$	125,000
	UV Disinfection Unit installation		LS	\$	38,000	\$	38,000
	Backwash Pumps		EA	\$	37,500	\$	75,000
	Air Scour Blower SUBTOTAL	1	EA	\$	35,000	\$	35,000 1,245,000
DIVISION 13 - S	SOBIOTAL SOBIOTAL					2	1,243,000
	Pre-engineered metal canopy for Modular Treatment Units	900	SF	\$	60.00	\$	54,000
	Pre-engineered metal canopy for UV equipment	400	SF	\$	60.00	\$	24,000
	SUBTOTAL			_		\$ \$	78,000
DIVISION 15 - N						1	78,000
	Piping connection to new Modular Treatment Units		LS	\$	16,000.00	\$	16,000
	Replace piping in poor condition		LS	\$	200,000.00	\$	200,000
	Piping to new sludge lagoon Piping for UV System		LS LS	\$ \$	20,000.00	\$ \$	20,000 15,000
				ç	13,000.00	\$	-
	SUBTOTAL					\$	251,000
	SUBTOTAL DIVISIONS 2-15					\$	2,046,000
DIVISION 16 - E	ELECTRICAL Electrical panels and wiring	25	%		Div 2-15	\$	511,500
	Lighting		LS	\$	12,000	\$	12,000
	SUBTOTAL					\$	523,500
DIVISION 17 - II		10	0/		Div 2 15	ć	201 000
DIVISION 17 - II	Controls and Programming	10	%	_	Div 2-15	\$ \$	204,600 204,600
DIVISION 17 - II		10	%		Div 2-15	\$ \$	204,600 204,600
DIVISION 17 - II	Controls and Programming	ONSITE CON	STRUCTION		DIV 1) SUBTOTAL	\$	
DIVISION 17 - II	Controls and Programming	ONSITE CON	STRUCTION		DIV 1) SUBTOTAL /ISION 1 (ABOVE)	\$ \$ \$	204,600 2,774,100 346,763
DIVISION 17 - II	Controls and Programming	ONSITE CON	STRUCTION	OR) DIV	DIV 1) SUBTOTAL /ISION 1 (ABOVE) SUBTOTAL	\$ \$ \$	204,600 2,774,100 346,763 3,120,863
DIVISION 17 - II	Controls and Programming	ONSITE CON	STRUCTION	OR) DIV	DIV 1) SUBTOTAL /ISION 1 (ABOVE)	\$ \$ \$	204,600 2,774,100 346,763
DIVISION 17 - II	Controls and Programming	ONSITE CON	STRUCTION ADDITIVE F	OR) DIV OF CON	DIV 1) SUBTOTAL /ISION 1 (ABOVE) SUBTOTAL ł & PROFIT (15%) SUBTOTAL ITINGENCY (30%)	\$ \$ \$ \$ \$ \$ \$ \$ \$	204,600 2,774,100 346,763 3,120,863 468,129 3,588,992 1,076,698
DIVISION 17 - II	Controls and Programming	ONSITE CON	STRUCTION ADDITIVE F	OR) DIV OF CON	DIV 1) SUBTOTAL /ISION 1 (ABOVE) SUBTOTAL ł & PROFIT (15%) SUBTOTAL	\$ \$ \$ \$ \$ \$ \$ \$ \$	204,600 2,774,100 346,763 3,120,863 468,129 3,588,992

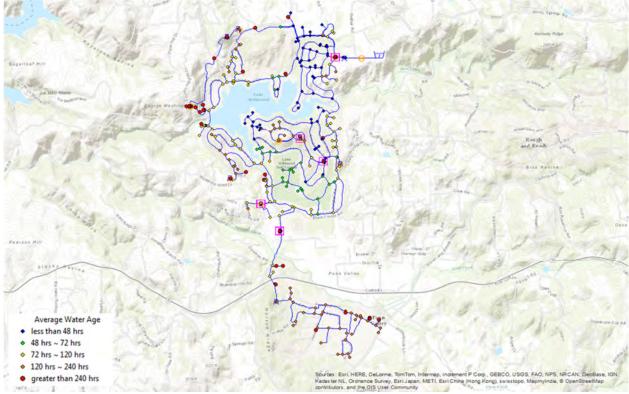
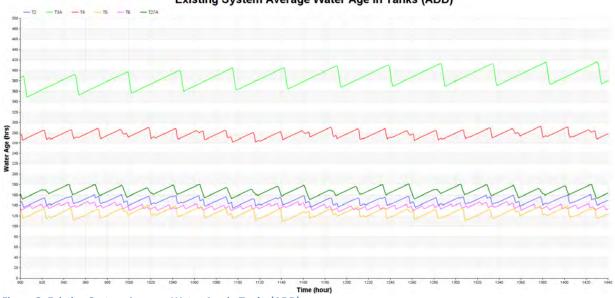
Appendix B-4: WTP O&M Cost Estimates

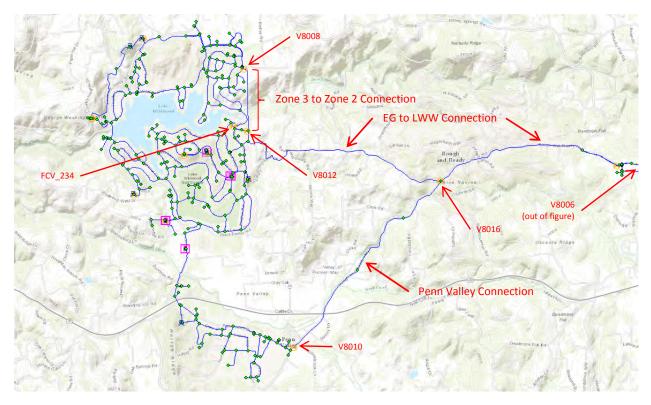
Operation and Maintenance Cost Opinion Date: 5/25/17				LW	it Costs: W O&M George O&M			ons treated ons treated]													
	2016	2017	2018	2019	2020	2021	2022	2 2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	5 203	6 2037
Total Supply																						
ADD (MGD)	1.19	1.21	1.23	1.25	1.28	1.30	1.32	2 1.35	1.37	1.39	1.41	1.44	1.46	1.48	1.50	1.53	1.55	1.57	1.60	1.62	2 1.64	4 1.66
MDD (MGD)	2.97	3.02	3.08	3.14	3.19	3.25	5 3.31	3.36	3.42	3.48	3.53	3.59	3.65	3.70	3.76	3.82	3.88	3.93	3.99	4.05	5 4.10	0 4.16
Flow in New Pipeline																						
ADD (MGD)	0.83	0.85	0.86	0.88	0.89	0.91	0.93		0.96	0.97	0.99				1.05		1.09		1.12			
MDD (MGD)	2.08	2.12	2.16	2.20	2.24	2.28	2.32	2.36	2.40	2.44	2.48	2.52	2.56	2.60	2.63	2.67	2.71	2.75	2.79	2.83	3 2.87	7 2.91
WTP Upgrades Only																						
LWW O&M	\$ 405,499 \$	\$413,270	\$421,040	\$428,810 \$	436,580	\$444,350	\$452,120	\$459,890	\$467,660	\$475,430	\$483,200	\$490,970	\$498,740	\$506,511	\$514,281	\$522,051	\$529,821	\$537,591	\$545,361	\$553,131	\$560,901	\$568,671
NPV	\$ 6,870,000																					
WTP and Pipeline																						
E. George O&M	\$ 211,108 \$	\$215,154	\$219,199	\$223,244 \$	227,289	\$231,334	\$235,380	\$239,425	\$243,470	\$247,515	\$251,560	\$255,606	\$259,651	\$263,696	\$267,741	\$271,786	\$275,832	\$279,877	\$283,922	\$287,967	\$292,012	\$ 296,058
LWW O&M	\$ 121,434 \$	\$123,761	\$ 126,088	\$128,415 \$	130,742	\$133,069	\$ 135,395	\$137,722	\$140,049	\$142,376	\$144,703	\$147,030	\$149,357	\$151,684	\$154,011	\$156,337	\$158,664	\$160,991	\$163,318	\$ 165,645	\$167,972	\$ 170,299
Total	\$ 332,542 \$	\$338,915	\$ 345,287	\$351,659 \$	358,031	\$364,403	\$370,775	\$377,147	\$383,519	\$389,891	\$396,263	\$402,635	\$409,008	\$415,380	\$421,752	\$428,124	\$434,496	\$440,868	\$447,240	\$453,612	\$459,984	\$466,356
NPV	\$ 5,630,000																					

Appendix C: Required System Improvements from Modeling

Lake Wildwood System: Extended Period Modeling Results

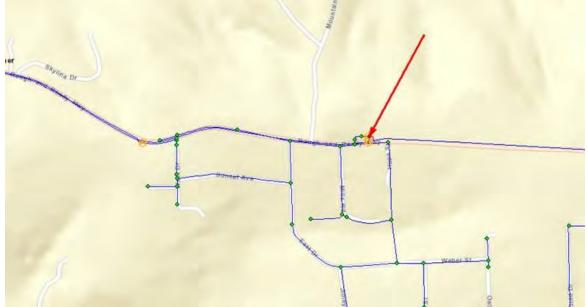
Existing Average Water Age – LWW Average Day Demand (1.2 mgd) (using 20170125_LWWLUpdatedModel)


Figure 1. Existing LWW System Average Water Age (ADD)

Existing System Average Water Age in Tanks (ADD)

Figure 2. Existing System Average Water Age in Tanks (ADD)


Combined System Average Water Age – LWW Average Day Demand (1.2 mgd) (using Combined_EGeorge_LWW_HDR_20170628)

Supply only from Elizabeth George system

Model file here: <u>COMBINED_EGEORGE_LWW_HDR_20170628</u> New Infrastructure:

- Upsized pipes in Elizabeth George System: New T-Main extends along Rough and Ready to between Mills Road and Hill Street.

- Pipe improvements in Penn Valley (in accordance with Phase 1 through Phase 3 shown on Figure 11 Penn Valley Improvements)
- Connection between Elizabeth George and Lake Wildwood Systems:
 - 16" transmission pipeline connecting Elizabeth George (EG) system to Lake Wildwood (LWW) system. Connection to LWW Zone 3.
 - o 16" transmission pipe Zone 3 to Zone 2 connection is about 4,200 ft.
 - o 12" transmission pipeline connection to Penn Valley.
- New control valves:
 - Control Flow from EG to LWW (V8006)
 - Prevent negative pressure in new transmission line (V8016). [Note this was needed in the model due to upstream flow control and may not be needed in reality.]
 - PRV (setting at 90 psi) from new transmission pipeline to Zone 3 (V8012)
 - Control flow from LWW Zone 3 to Zone 1 (maximum flow set at 750 gpm) to allow cycling of tank T2 (FCV_234)
 - Control flow from new transmission pipeline to Zone 2 (maximum flow set at 750 gpm) to allow cycling of tank T3A (V8008)
 - Control flow to Penn Valley (maximum flow set to 250 gpm) to allow cycling of tank T27A (V8010)
- Pump Stations deactivated:
 - Jayhawk Pump Station (from Zone 1 to Zone 3; filled tank T6)
 - Pleasant Valley Pump Station (filled tank T27A)
- Valve controls as follows:

Valve Model ID	Model Valve Type	Controls	Purpose
V8006	Flow Control Valve	Setting at 1460 gpm	Limit flow to LWW to 2.1 mgd
V8016	Vacuum Breaker Valve	None	Used in model to prevent negative pressure due to upstream flow control (V8006)
V8012	Pressure Reducing Valve	If T6 level above 29.5 ft valve closed; If T6 level below 18 ft valve set at 90 psi	Allows flow into Zone 3 and fill tank T6
FCV_234	Flow Control Valve	If T2 level above 26 ft valve closed; If T2 level below 17 ft valve allows 750 gpm	Fills tank T2 (in Zone 1). Flow limited to prevent pressure drop in Zone 3.
V8008	Flow Control Valve	If T3A level above 22 valve closed; If T3A level below 16 valve allows 750 gpm	Fills tank T3A (in Zone 2)
V8010	Flow Control Valve	If T27A level above 18 valve closed; If T27A level below 12 valve allows 250 gpm	Fills tank T27A

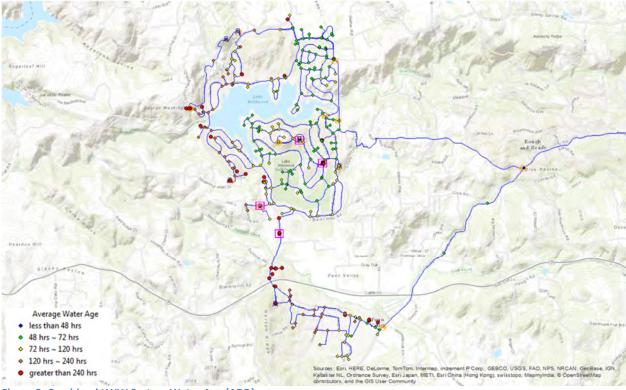
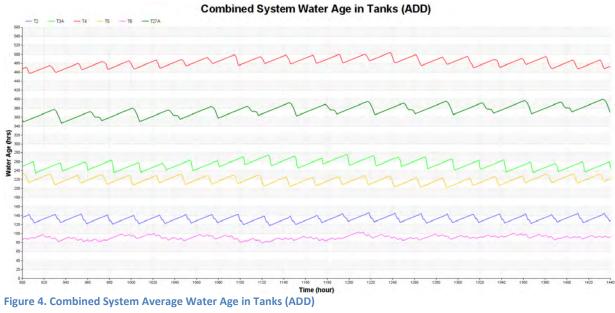



Figure 3. Combined LWW System Water Age (ADD)

Combined System Min Pressure – LWW Max Day Demand (2.1 mgd) (using Combined_EGeorge_LWW_HDR_20170628)

 Image: market in the table in the table in the table in table

Supply only from Elizabeth George system

Figure 5. Combined LWW System Minimum Pressure (MDD)

Combined System Min Pressure – LWW Future Max Day Demand (4.2 mgd) (using Combined_EGeorge_LWW_HDR_20170628)

Supply from both existing treatment plan and from Elizabeth George system (EG supply limited to 2.1 mgd)

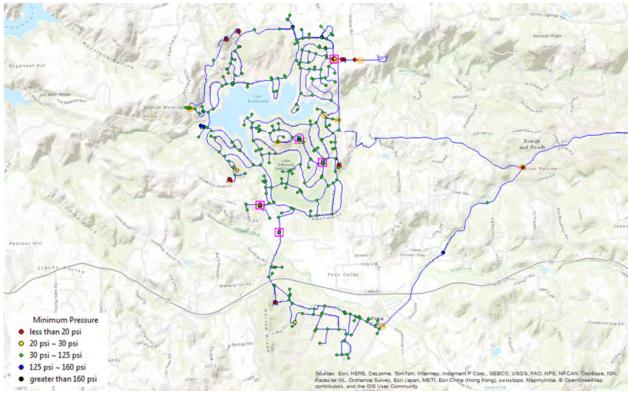
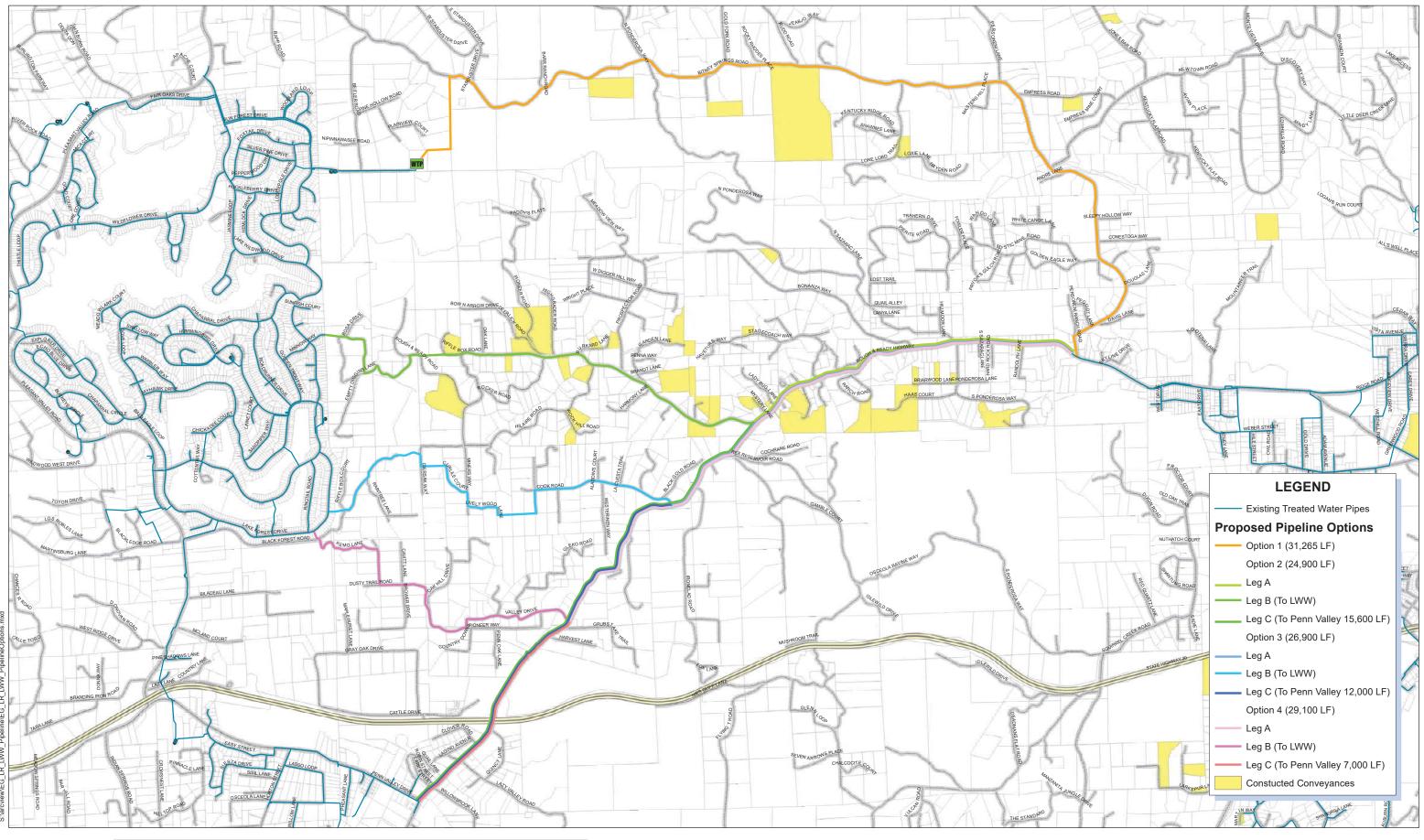



Figure 6. Combined LWW System Minimum Pressure (Future MDD)

Appendix D: Constructed Conveyance Map

NEVADA IRRIGATION DISTRICT NEVADA COUNTY -- PLACER COUNTY GRASS VALLEY, CALIFORNIA

E. GEORGE / LOMA RICA TO LAKE WILDWOOD PIPELINE OPTIONS - DRAFT

Drawn By: D. HUNT

Date: 2/19/2016

Scale: NO SCALE

Sheet: <u>1</u> of <u>1</u>

Appendix E: Solids Generation Calculation

Lake Wildwood WTP - Residuals Generation Calculations

Current Conditions

Treatment Plant Avg Raw Auter Auter					
Treatment Plant Water Flow Turbidity' Alum Dose n (mgd) (NTU) mg/L n 0.640 8.8 41 n 0.500 7.0 120 n 1.150 9.1 20 un 1.400 6.8 18 un 1.160 9.1 18 un 1.160 5.1 20 un 1.150 3.4 18 un 1.150 3.4 18 un 1.150 3.4 18 un 1.16 3.4 18 un 0.0000 3.4 18 un<			Avg Raw		
Flow Turbidity* Alum Dose an (mgd) (NTU) mg/L eb 0.640 8.8 41 ob 0.500 7.0 41 eb 0.700 19.2 20 eb 0.710 19.2 20 eb 0.900 10.41 20 eb 0.900 10.42 20 ay 1.150 9.1 20 un 1.400 6.8 18 un 1.400 6.8 18 un 1.540 3.4 18 un 1.540 3.4 18 ov 0.900 3.4 18 un 1.540 3.4 18 ot 0.640 3.4 18 ot 0.51 3.2 25 ot 3.0 3.0 30 ot 0.640 4.2 41		Treatment Plant	Water		Equivalent Dry Sludge
(mgd) (MTU) mg/L an 0.640 8.8 41 eb 0.500 8.8 41 pr 0.500 7.0 41 pr 0.70 19.2 20 av 1.150 9.1 20 av 1.150 9.1 20 av 1.150 9.1 20 av 1.150 6.8 18 un 1.400 6.8 18 un 1.800 6.9 18 un 1.800 6.9 18 un 1.540 5.1 25 oth 3.4 18 oth 3.4 18 oth 3.4 3.4 18 oth 3.4 3.4 3.4 oth 3.4 3.4 3.4 oth 3.4 3.4 3.4 oth<	Date	Flow	Turbidity'	Alum Dose	Generation
an 0.640 8.8 8.8 8.8 eb 0.500 7.0 8.8 8.8 pr 0.770 7.0 7.0 7.0 pr 0.770 19.2 9.1 19.2 9.1 ay 1.150 9.1 10.4 9.1 9.1 ay 1.150 9.1 8.8 9.1 9.1 ay 1.150 9.1 9.1 9.1 9.1 out 1.800 6.9 3.4 8.8 1.1 oct 1.150 5.1 9.1 9.1 9.1 oct 0.900 5.1 9.1 9.1 9.1 oct 0.900 5.1 9.1 9.1 9.1 ot 0.640 9.3 9.1 9.1 9.1 ot 0.640 9.3 9.1 9.1 9.1 ot 0.610 9.3 9.3 9.3 9.3 ot 0.610		(mgd)	(NTU)	mg/L	(lb/mo)
eb 0.500 7.0 7.0 ar 0.770 19.2 19.2 ay 1.150 9.1 19.2 ay 1.150 9.1 9.1 un 1.400 6.8 9.1 un 1.400 6.9 4.8 un 1.800 4.8 3.4 oct 1.150 5.1 5.1 oct 0.900 5.1 5.1 5.1 oct 0.900 5.1 5.1 5.1 oct 0.640 5.1 5.1 5.1 oct 0.640 5.1 5.1 5.1 fotal 1.10 5.1 5.1 5.1 fotal 5.1 5.1 5.1 5.1 fotal 5.1 5.1 5.1 5.1 fotal 5.1 5.1 5.1 5.1	Jan		8.8	41	4,790
ar 0.770 19.2 pr 0.900 10.4 ay 1.150 9.1 ay 1.400 6.8 un 1.400 6.8 lul 1.800 6.9 ug 1.540 3.4 oct 0.900 3.4 for 1.150 5.1 oth 4.2 Annual	Feb		7.0	41	3,444
pr 0.900 10.4 ay 1.150 9.1 un 1.400 6.8 ull 1.800 6.9 ug 1.800 6.9 ug 1.540 5.1 oct 1.150 3.4 oct 0.900 3.4 oct 0.900 3.4 oct 0.900 3.4 oct 1.150 5.1 oct 0.900 3.4 ov 0.640 4.2 1.10 1.10 1.10	Mar		19.2	20	6,607
ay 1.150 9.1 un 1.400 6.8 lul 1.800 6.8 ug 1.800 6.9 ug 1.800 6.9 ug 1.540 6.9 ug 1.540 5.1 oct 1.150 5.1 oct 0.900 3.4 ov 0.640 4.2 Annual Total	Apr		10.4	20	5,107
un 1.400 6.8 lul 1.800 6.9 ug 1.800 6.9 nd 1.800 6.9 nd 1.540 3.4 ect 1.150 5.1 ov 0.900 5.1 oct 0.640 4.2 Annual Total	May		9.1	20	6,006
Iul 1.800 6.9 ug 1.800 4.8 ug 1.540 5.1 oct 1.150 oct 0.900 ov 0.900 oct 3.0 oct 0.640 4.2 Annual Total	Jun		6.8	18	5,973
ug 1.800 4.8 ep 1.540 3.4 oct 1.150 5.1 oct 0.900 3.0 ov 0.900 4.2 oct 0.640 4.2 f 7.10 f 7.10	Jul	1.800	6.9	18	7,719
ep 1.540 3.4 bct 1.150 5.1 3.4 ov 0.900 3.0 3.0 3.0 ov 0.900 4.2 4.2 4.2 4.2 ec 0.640 4.2	Aug		4.8	18	6,448
oct 1.150 5.1 ov 0.900 3.0 ec 0.640 4.2 1.10 7.10	Sep		3.4	18	4,831
ov 0.900 3.0 ec 0.640 4.2 Annual Total	Oct		5.1	25	5,135
ec 0.640 4.2 4.2 Annual Total	Νον		3.0	30	3,902
1 10	Dec		4.2	41	3,805
1.10			7	Annual	
	Average	1.10	<u> </u>	Total	63,768

* Based on wet year conditions

Future Conditions (maximum demand scenario)

		Treatment Plant	Avg Raw			
	Treatment Plant	Flow with	Water		LWW Only - Equivalent	
Date	Flow	pipeline	Turbidity'	Alum Dose	Dry Sludge Generation	LWW and Pipeline
	(mgd)	(pɓɯ)	(NTU)	mg/L	(Ip/qI)	(Ip/qI)
Jan	1.7		8.8	17	13,013	0
Feb	1.4		7.0	14	9,355	0
Mar	2.1		19.2	20	17,950	0
Apr	2.4	0.4	10.4	20	13,873	2,080.97
May	3.1	1.1	9.1	20	16,316	5,063.48
Jun	3.8	1.8	6.8	18	16,227	7,211.90
Jul	4.9	2.9	6.9	18	20,971	11,853.18
Aug	4.9	2.9	4.8	18	17,516	9,900.35
Sep	4.2	2.2	3.4	18	13,125	6,394.41
Oct	3.1	1.1	5.1	25	13,950	4,329.45
Νον	2.4	0.4	3.0	30	10,601	1,590.19
Dec	1.7		4.2	41	10,338	0
				Annual		
Average	3.0	1.6		Total	173,236	48,424